Marine Battery Monitors – Marine How To https://marinehowto.com The go-to site for DIY boat owners featuring in depth, step-by-step articles for repair maintenance & upgrades Wed, 18 May 2022 12:26:34 +0000 en-US hourly 1 https://wordpress.org/?v=5.9.3 Balmar Smartgauge Battery Monitoring Unit https://marinehowto.com/smartgauge-battery-monitoring-unit/ https://marinehowto.com/smartgauge-battery-monitoring-unit/#comments Sun, 19 Apr 2015 22:59:02 +0000 http://beneriksen.com/MHT/?p=12290 The Balmar Smartgauge Site Plug: Please help support MarineHowTo.com by purchasing from us. MarineHowTo.com cannot remain free without reader support. This site is 100% reader supported! Shop MarineHowTo.com (LINK) PREFACE: This article is quite in-depth but much less so than it could have been. I have given a [...]

The post Balmar Smartgauge Battery Monitoring Unit appeared first on Marine How To.

]]>

01 Smart Gauge

The Balmar Smartgauge

Site Plug: Please help support MarineHowTo.com by purchasing from us. MarineHowTo.com cannot remain free without reader support. This site is 100% reader supported!
Shop MarineHowTo.com (LINK)

PREFACE:
This article is quite in-depth but much less so than it could have been. I have given a very brief overview of my actual testing procedures but enough to explain the methodology. Other than the EnerSys white paper this is the only other independent testing of this product that I know of.

Unlike EnerSys I tested new, used and even well-used marine batteries. If the product had failed my testing, this article would not be here. I don’t believe in writing articles to simply bash a product, unless of course it is a safety hazard.. The Smartgauge really surprised me and I am not easily satisfied. To be 100% honest I went into this testing with a slight bias that it would not or could not work. I was proven wrong.

Ah / Coulomb Counters:

For many years I have been a big proponent of Ah or Coulomb counting battery monitors and still am, for the right owner. These devices calculate and keep track of the current flowing into and out of a battery bank so you can attempt to keep track of SOC & Ah’s consumed, or at least get a rough approximation.

Coulomb counters give you lots of useful information; voltage, current, Ah’s consumed and SOC to name a few. Some can even give you historical data. These are nice features all packed into one compact unit. They are however not the easiest devices to program, not the easiest to wire and lose accuracy at an alarming rate, if not kept on top of.

Ah counters can be so problematic to use correctly that I had to write an entire article on installing and wiring them properly as well as a sister article to that one on proper programming. Despite both of these articles people still email me because they are confused. The Smartgauge is a simple two or three wire hook up!

Despite their complexity Ah counters have led almost every one of my customers to longer battery life, when properly used & wired. However, in some cases they have become so out of synch that they have led to erroneous readings that are simply meaningless.

Last summer I had a link 2000 reading -1100 Ah’s on a 65 Ah starting battery… (smirk) That can’t really happen now can it….? (wink)

Up until recently, this type of battery monitor was the best we had. The only other option was an ROCV reading (resting open circuit voltage) or SG measurement (specific gravity) neither of which lend themselves to prudent practical use or accuracy when actually using the vessel.

The problem with traditional Ah or Coulomb counters is keeping them accurate. As batteries age their capacity changes, the charge efficiency changes as does the Peukert’s constant. A battery is an ever moving target, so the 100Ah battery you bought three years ago may now only be a 75Ah battery.

If your battery monitor is still programmed for a 100 Ah capacity, and you are drawing 50% of the assumed Ah capacity out of it, based on this 100Ah’s, you are really drawing the bank to just 25% SOC, rather than the well accepted safe discharge level of 50%.

Follow me on this one.

  • You had 100Ah programmed into the Ah counter for a 100Ah battery
  • Your battery, due to age and use, is now 75Ah’s not 100Ah’s
  • You now draw an assumed 50% of 100Ah’s out of the battery
  • Instead of being at 50% SOC you wind up at 25% SOC
75Ah - 50Ah = 25Ah remaining or approx 25% SOC.

Now if you threw Peukert’s exponent into the mix you may actually be lower or higher depending upon the actual load at which it was drawn.

Holy cow Ah counters are confusing???? (head bonk)

This is but one example where an Ah or Coulomb counter easily and regularly become inaccurate.

A trick many of us in the industry might use is to start with a lower programmed Ah capacity than the bank is rated for. The best option is to physically test the batteries for 20 hour capacity, but this is expensive and time consuming.

For the 100Ah battery I might initially program it at 95Ah’s so the owner is never actually drawing to 50% SOC that first year (self protective feature). The next year I might remove another 3% – 5% off the capacity etc. etc.. These are just rough guesstimates, but they are never perfect. I then also count on the fact the battery bank is being drawn at average currents that are below the 20 hour rated load. This can lead to slightly more usable bank capacity, but again this gets CONFUSING for the average boater to understand any time we bring our good friend Mr. Peukert into the equation.

The only way to accurately know the actual battery capacity is to perform a physical 20 hour load test. This is complicated, time consuming, and very few boaters are willing to do this.

To be honest I don’t know of a single boater who actually has conducted an accurate 20 hour load test. Ah / Coulomb counters rely on the actual 20 hour capacity figures being accurate, to actually remain accurate, over time. No accurate 20 hour capacity figure, no reasonable accuracy in the Ah counter, only a “close enough” range. This may not be half-bad but is a a long way from accurate.

Unfortunately the scenario I laid out for a Coulomb/Ah counter is just one of the many ways these devices can become tripped up and lead to inaccurate readings. There are many more “gotcha” scenarios that can rear their ugly head, including shunt wiring mistakes, battery temperature, false re-synchs caused by solar or wind, incorrect programing etc. etc.. For the last 20+ years however, these are all we’ve had, and they are certainly better than nothing at all.

I suspect the big reason they are, and have been better, is because they make owners more aware of their bank. More awareness of your bank and charge source performance is important, and can play a larger role than we may otherwise assume.

For years I have been trouble shooting and helping owners try to use these devices in a smarter and more accurate manner. When owners understand it they can be very useful and as I said most all of my customers have had longer battery life as a result.

  • FACT: Traditional Ah / Coulomb counters become LESS ACCURATE as time goes on when related to SOC.
  • FACT: The Balmar Smartgauge gets MORE ACCURATE as time goes on for SOC

The Balmar Smartgauge is a major paradigm shift in battery SOC monitoring! Read on to find out why..

Traditional Ah Counter

This is what I refer to as a traditional Ah/Coulomb counter. In order to display the SOC correctly, as seen here, requires proper programming, battery temperature (some Ah counters offer this & some don’t), a known accurate 20 hour Ah capacity, a charge efficiency compensation and shunt wiring with no sneaker wires bypassing it.

Can Ah counters be programmed accurately? Yes they can, but certainly not to the tenth of a percent. If they are accurate today they will not be accurate three months or a year from now unless you physically program them for that.

What I am getting at is that Coulomb / Ah counters are only as accurate as you the owner make them. They are not plug and play and they do require human intervention.

BULLET POINT: Ah counters, pretty much all of them, can Coulomb count extremely accurately this is very, very simple stuff to do. Where they miss the mark is that this Ah counting rarely if ever matches your battery due to Peukert, temperature, rate of discharge etc. etc. etc..

Using The Wrong Screen For Data:

Looking at a -Ah’s screen that says -50Ah on a 100Ah rated battery tells you little to nothing about the actual SOC of the battery because;

  • The discharge current at which that -50Ah’s was drawn changes the SOC outcome
  • The battery temperature changes the SOC outcome
  • The actual capacity of the battery changes the SOC outcome

Coulomb counting and looking at only the -Ah counted/consumed screen is not the best and most accurate way to use a Coulomb counter. Programming for actual capacity, Peukert and temp or using a temp sensor, will get you the most accurate SOC readings with an Ah counter.

02 Smart Gauge

03 Smart Gauge

Peukert Effect & Ah Counting

Deep cycle lead acid batteries generally don’t like to deal with high discharge loads such as inverters, windlass motors water makers or electric winches. When you apply a discharge load above than the 20 hour Ah rating the actual usable capacity of the bank shrinks. Conversely if you consistently draw the capacity from the bank at below the 20 hour rating you will get slightly more capacity from the bank. Click the image to make it larger and see what I mean.

Deep cycle lead acid batteries, in the US, are rated at a 20 hour rating. This means a 100Ah battery can supply a 5A load for 20 hours, at 77-80F, before hitting a terminal voltage of 10.5V.

A 400Ah bank can supply a 20A load for 20 hours before hitting 10.5V. Any loads applied that are above the 20 hour rating, diminish the capacity of the bank and loads below the rated load result in slightly more usable capacity.

The 20 hour discharge rate is determined by; Ah rating ÷ by 20.

100Ah battery ÷ 20 = 5A
125Ah battery ÷ 20 = 6.25
225Ah battery÷ 20 = 11.25A

From this it is easy to see why simply looking at the Ah consumed screen of a Coulomb counter can be misleading at best. This is why an Ah counter that can correct for temp, Peukert, charge efficiency etc. will be the most accurate, when properly programmed, and the SOC screen is used.

Unless you have a consistent load that precisely matches the 20 hour rating, of your bank, and the battery is at 77F, then the Ah screen is simply not giving you an accurate representation of SOC.

Peukert:

All lead acid batteries have different Peukert constants. Some AGM batteries are as low as 1.11 and some flooded deep cycles as high as 1.50+.

Lets assume you have an Ah counter and a 100Ah bank and all you look at is the -Ah consumed screen.

The Peukert effect on two 100Ah banks at the same average 9A load:

* Bank 1 100Ah – Peukert 1.11, 9A load, 77F = Capacity at 9A Load = 94 Ah
* Bank 2 100Ah – Peukert 1.35, 9A load, 77F = Capacity at 9A Load = 81.5 Ah

If you only used the -Ah consumed screen on the 1.35 Peukert bank you would have:

* Non-Reality: -50Ah’s = “assumed” 50% SOC (100Ah – 50Ah = 50% SOC)

* Reality: -50Ah’s = 31.5% SOC not 50% SOC. (81.5Ah (9A load) – 50Ah = 31.5% SOC)

Of course your discharge load would never be a steady 9A continuously, and you would never use the entire capacity of the bank, so the numbers and examples are not precise, just as boat use related to Peukert, temp etc. is not precise. They do however give you a good idea of why proper programming, calibration and using the right screen can be the best way to use an Ah counter.

Here is another more simplistic look at it:

100 Ah Battery – Peukert 1.25:

100Ah Battery @ 80 Load = 50 Ah Capacity
100Ah Battery @ 50A Load = 56.23 Ah Capacity
100Ah Battery @ 40A Load =59.5 Ah Capacity
100Ah Battery @ 30A Load = 63.9 Ah Capacity
100Ah Battery @ 20A Load = 70.7 Ah Capacity
100Ah Battery @ 10A Load = 84 Ah Capacity
100Ah Battery @ 5A Load =100 Ah Capacity (20 Hour Discharge Rate)
100Ah Battery @ 3A Load = 113.6 Ah Capacity
100Ah Battery @ 1A Load = 149.5 Ah Capacity

I highlighted the 5A load because that is exactly what Ah capacity ÷ 20 gets you to, and where the battery is “rated”.

Peukert’s Effect =

* Discharge loads above the 20 hour rate result in less usable capacity.

* Discharge loads below the 20 hour rate result in slightly more usable capacity.

This is exactly why using the -Ah consumed screen is simply not an accurate representation of SOC.

Using the SOC screen, which has been properly programed, will result in the most accurate use of an Ah/Coulomb counter.

Are Ah counters complicated? You bet they are…. (wink)

Holy Freak Show..!!!!!

Seriously, welcome to my world. This look like someone spilled spaghetti in the battery compartment… Ouch…..

Believe it or not there is a shunt for a traditional Ah/Coulomb counter at the bottom of this picture. It’s smack dab in the middle with the two brass squares. This bank was so grossly mis-wired there was no chance in hell it could ever be close to accurate.

Traditional Ah counters rely on shunts to measure amperage flowing into or out of the bank. In reality a shunt does not measure amperage, it measures voltage drop at the mV level. The Ah counter transposes this into displayed amperage or calculates -Ah’s consumed or Ah’s returned.

The shunt in this image is a typical 500A X 50mV shunt that comes with many Ah counters. This nomenclature simply means that at 500A of current there will be a 50mV drop between the first brass square and the second brass square. A sense wire on each of the brass squares measures the mV drop or difference across the shunt. Every point in between 0A and 500A has a known calibrated value the battery monitor transposes to current.

Think of a shunt as the electric meter for your house. If you climbed the pole and ran an extension cord directly to the live wires, and then began running your fridge on it, the electric company could not charge you for the fridge use because their meter could not see this use.

Any time a wire sneaks in front of a shunt, a sneaker wire, it essentially does the same thing, it bypasses the battery monitor. With sneaker wires bypassing the Ah counter it can’t see it, so it can’t record it. Wiring shunts is not difficult but I see about 70% +/- of them wired incorrectly, even by pro’s..

With an improperly wired shunt nothing you do to program the Ah counter will make work correctly.

For simple SOC predictions you may want to consider a product like the Balmar Smartgauge. The Smartgauge uses no shunt because and is a shunt-less design. This means there are no large gauge battery lugs to crimp, no large gauge jumper wires to make up, and there is no complicated programing beyond selecting the battery type. This makes the Balmar Smartgauge a DIY’s dream battery monitor. Its easy, simple, never needs programing and stays accurate despite temperature, battery age/condition etc.. It actually gets more accurate the longer it stays connected to the bank with its learning algorithm. The weakness of the Smartgauge is its lack of Ah’s consumed or current data. For most boaters though SOC & voltage is often enough.

04 Smart Gauge

05 Smart Gauge

The Smartgauge – Simple & Effective

There’s a new Sheriff in town and his aim, and ability to hit closer to the center of the target, is better than the old Sheriff..

The Smartgauge is actually a pretty amazing tool for SoC. I am a die hard skeptic, go figure, so when new toys like this come along I need to see, touch, poke, prod, test and put them through the paces. I need to see things for myself not what the marketing guy intended for me to see.

As a result of my skepticism I just finished multiple MONTHS of testing the Smartgauge. I tested it on AGM, FLA (flooded lead acid), GEL and LiFePO4 batteries.

The Smartgauge does exactly what it says it says it does with AGM, GEL and FLA batteries.

It falls flat on its face with LiFePO4 batteries, but this was to be expected because LiFePO4 has such a flat voltage curve as to be apparently unlearn-able. I suspect if an algorithm was created specifically for LFP batteries it may eventually learn the bank, but I doubt Smartgauge will do that for such a small niche market.

PHOTO: The Smartgauge is plain & simple, it displays battery SOC for the house bank and battery voltage for an AUX bank.

Here is is showing the bank at 92% SOC. In the mindset of keep it simple voltage is displayed in 0.05V increments and SOC, displayed as “C”, from 0-100%. That is all it does, see, simple.

The difference is the Smartgauge does this quite accurately and tracks SOC regardless of temperature, battery age etc.. The longer you use the Smartgauge, and leave it connected to the bank, the more accurate it becomes.

Site Plug: In order to fund Marine How To there are certain products I use personally or we install for paying customers that I choose to share with our readers in the Marine How To Web Store. I sell these products at the most competitive prices we can in order to re-invest into this site to keep the content free. The Balmar Smartgauge is one of those products. If you think you want a Smartgauge please support Marine How To and purchase it from the Marine How To Web Store.

Simplicity

When Balmar introduced the UK developed Smartgauge to the US market I was pretty excited. I had tried to buy one two years ago but my emails went unanswered so I filed it under the scam & snake oil folder in my mental filing cabinet.

I had literally forgotten about the Smartgauge until Rick Jones of Balmar approached me at the Annapolis show to tell me they had added it to their product line and were now the US distributors. Even though I implicitly trust Rick and the guys at Balmar, the claims still seemed too good to be true. Why had no one been able to do this before?

To make a long story short I tracked down an inside contact at EnerSys (name withheld) to see if I could get my hands on the white paper so often referenced by Smartgauge.

EnerSys are the makers/inventors of TPPL AGM technology sold under the Odyssey & Die Hard Platinum brand for marine use and they are the inventors of the Optima spiral wound batteries (which has been sold off). EnerSys however is much larger than their presence in the marine market and much of their business is in large standby/UPS systems and military use. Because EnerSys has no financial ties to Smartgauge I found their white paper to be a breath of fresh air in a credible independent test data manner. I don’t believe EnerSys allows Smartgauge to use that white paper, and I was asked not to reproduce it, so have only taken excerpts from it.

“But RC how does it work?”

You’ve got me..? I have no idea how it actually works, at least at the detail level programing/algorithm level (proprietary stuff), but it is designed to track voltage in a very unique manner and then compare these readings to an internal database and other measures to keep it on-point. Many internet posters have assumed, posited and suggested, that it checks internal resistance and pulses across the battery etc.. It may actually do this. In our lab I’ve have not seen evidence of this on the power / volt sensing wires, even with an Oscilloscope. However the oscilloscope we have is not a tracking or data-logging version. If it only pulsed the battery once or twice per day we would have missed it unless glued to the screen for hours.

The Smartgauge tracks voltage, up to 1500 times per second. This tracking speed allows it to detect trends and compare it to internally programed data models. The Smartgauge does use computer modeling, of actual batteries, and then feeds this data into an algorithm that can “learn” the bank as time goes on. This modeling must have been time intensive to get to this level of accuracy  and this sort of programing minutia. All I can say is that over time it seems to adapt to learn your bank and give significantly more accurate SoC readings than an Ah/Coulomb counter can, as programmed and used by the average installer or boat owner, especially when the owner starts partial state of charge cycling.

How the Smartgauge actually does what it does, at the detail level, is as closely a guarded a secret as the Frosted Flakes recipe that Tony the Tiger protects.

The best overview I can give, on the Smartgauge level of accuracy, is the executive summary of findings by EnerSys.

QUOTE = EnerSys White Paper

EXECUTIVE SUMMARY

SmartGauge® is a Battery Monitoring Unit (BMU) that is intended to be fitted within military vehicles and to provide crucial information to vehicle commanders, such as State of Health (SoH), State of Charge (SoC) and the time remaining they have available to continue operation until battery power runs out.

The working partnership between EnerSys and SmartGauge® has resulted in EnerSys testing the SmartGauge® BMU whilst connected to a Thin Plate Pure Lead (TPPL) battery type within its electrical laboratory at Newport South Wales, to evaluate the performance and accuracy of its data.

The SmartGauge® BMU was tested using a 12V 100Ah TPPL battery which was subjected to a 100% depth of discharge test, followed by a full 12 hour recharge. This cycle was repeated continuously until the battery reached 80% of its rated capacity, the SmartGauge® BMU and EnerSys laboratory data logging equipment (Digatron) continuously monitored the voltage, current, time and from which the State of Charge and State of Health was calculated.

The correlation of State of Charge (SoC) and State of Health (SoH) between the BMU data and Digatron Data was excellent with insignificant variance between the two readings based upon resolution increments of 1%.”

06 Smart Gauge

07 Smart Gauge

The Testing Station

We don’t own a six figure Digatron like EnerSys does, so this test station had to suffice for the best accuracy we could do.

Test Bench:

  • Charging – Mastech 3050EX & BK Precision 1900
  • Charging – 80W Solar Panel – Rogue MPPT 3048
  • Ah Counting – Victron BMV-602, Array DC Load Center, PentaMetric Data Logger
  • Discharging – Array 3721A 40A DC Electronic Load & 400W Inverter
  • Data Logging – PentaMetric Multi-Input Ah/Coulomb Counter & USB Interface
  • Misc. – Fluke 179 DVM (NIST Calibrated)

TEST METHODOLOGY:

#1   Determine actual 20 hour capacity for each of the batteries tested through 20 hour discharge capacity testing. Both used and new batteries were tested. New batteries do not deliver full rated capacity, until broken in, so as-is condition for 20 hour Ah capacity had to be determined.

#2   Program Ah counters with the new 20 hour capacity and run load tests side by side with the Smartgauge.

#3   Test Smartgauge for accuracy during charging & discharging events, including solar, inverter loads and DC loads. Batteries were determined full when charge current fell to less than .5% of Ah capacity at target absorption voltage. (absorption charging voltages varied by battery type).

#4  Control room temperature to 75F to remove the temperature equations from the test calculations. (77F was just too damn hot). Part way through I added a temp controlled water bath to more accurately maintain battery temp, and keep my room a bit cooler.

#5   Re-test batteries for physical Ah capacity at the end of testing to note if changes were noted or the batteries declined in capacity during testing. Two batteries actually increased Ah capacity by approx 4% (new flooded batteries not yet “broken in”) and the rest were under 1% changes or well within my range of error resolution to even calculate.

#6   All used batteries were equalized and serviced before being put into testing.

NOTE: This testing took approximately four months to complete. This is not quick or easy work if you want to get accuracy as close as you can for the equipment you have on hand. It was a real eye opener as to how inaccurate traditional Ah counters can be, in regards to SOC.

Test Procedure

In order to determine the if the SoC of the Smartgauge was correct I first had to accurately determine the Ah capacity of the batteries I was testing. I tested both new and used batteries to see how the Smartgauge would adapt to being inserted into a system with used batteries.. One flooded battery was seven years old.

The 20 Hour Capacity Test:

When conducting these tests the discharge load needed to be constant over the duration of each test. This is difficult if you don’t have the proper equipment because the voltage decays or decreases, as SoC declines. Due to this the discharge current changes due to Ohm’s law. As a result of this testing I now have a beautiful lab grade DC constant-load tester that will hold current precisely where you set it and then disconnect the bank when it hits 10.5V. This made this testing much easier, and more accurate.

Determining Ah Capacity On Used Batteries:

In order to compare the Smartgauge, to the two Ah counters, I had to first determine the batteries physical, at this point in time, 20 hour rating. This sometimes involved three complete discharge capacity tests all the way to 10.5V.

* First Capacity Test:
Load applied at labeled 20 hour rate and Ah’s delivered were recorded. If the battery did not have the labeled capacity I noted the Ah’s it supplied transferred that Ah capacity to the second test.

* Second Capacity Test:
For simplicity’s sake lets assume we had a 100Ah battery that only delivered 77Ah’s. The first test was at 5A/77F until the bank hit 10.5V. But, if the bank hit 10.5V at only 77Ah’s delivered, I then recalculated the test based on 80Ah’s. This is a small fudge factor I learned while performing these tests. What I wanted to do was come up with a new 20 hour rate for the battery in its current condition. I needed to identify a discharge rate that would allow the battery to run for 20 hours at 77F. If I figured I had an 80Ah bank then 80Ah’s ÷ 20 = 4A load. The second test was then run at 4A and the Ah’s delivered were recorded to see if it ran for 20 hours. If it matched, and it ran for 20 hours,  then no third test was needed.

* Third Capacity Test:
If Ah capacity did not match on the second test I then recalculated and performed a third test. I never had to go beyond a third test and was usually within .5 – 1 Ah. Close enough for this testing and far more accurate than any boater would ever program for on-board with a traditional Ah counter, unless they got very, very lucky.

After each capacity test the battery was immediately, and slowly, recharged at the new 20 hour rate. This recharging was done at constant current until voltage was at 16.0V (not for the GEL or AGM). This was constant-current (CC) only charging with no voltage limit (well technically 17V). It required my attention near the top end of charge and added many days to these tests because to recharge after the 20 hour capacity test took over 20 hours. This is over 40 hours of testing for each capacity test completed.

This type of discharge/recharge is often referred to as a reforming charge. It can tend to put some capacity back into the bank and can help minimize the abuse of taking the battery to 10.5V to find actual capacity. Tedious and time consuming though.

BULLET POINT: It should be noted that only one lead acid battery I tested produced the rated Ah capacity, a new AGM. None of the others did, not a single one.. (Head-Bang) New batteries take many cycles to fully break in and deliver rated capacity and used batteries lose capacity over time. During testing some of the new batteries slightly increased capacity, and some used batteries lost a 1% or so. Ah capacity on lead acid is an ever moving target. If you think your Ah counter is giving you accurate SOC data consider this bullet point and what it took me to find the actual, at this point in time, Ah capacity of these batteries. The only batteries tested, that delivered their ratings, were the LiFePO4 and one AGM..

PHOTO: This photo just represents the screen I have on the PentaMetric data logger. I can change the screen display to add up to three shunts and three voltage sources. I normally use this tool to track solar performance and do A/B comparisons but it is great for data like this too…

Ah’s were tracked simultaneously with both the PentaMetric and the Victron BMV-602 as well as the Array 3721 for discharging.

08 Smart Gauge

Smartgauge Wiring

Remember when I said easy? This is it. You run a duplex 14GA wire to the house bank cross-connecting it as shown. Place the negative on one end of the bank and and the fused positive on the other end of the bank. For the start battery voltage a single 14GA wire goes to the B2 terminal.

IMPORTANT: Do not wire the Smartgauge to any place other than the actual physical battery terminals.  In order for the Smartgauge to work accurately the positive & negative leads from the Smartgauge need to attach directly to the physical battery terminals, not a positive or negative bus, or anywhere other than the actual battery terminals.

The Smartgauge’s negative and positive and battery bank system take off positive and negative points must be wired as shown in this diagram. The Smartgauge and system wiring must not simply pull from an end battery of a parallel bank. Negatives off one end and positives off the other end.

WARNING: The Balmar Manual is actually incorrect on how it shows the Smartgauge to be connected, this happens. Please use the connection method shown here if you want optimal accuracy.

Even if you have a traditional battery monitor you need to bypass the shunt and wire the neg to the neg battery terminal. The consumption draw/load of the Smartgauge is so small a traditional Ah counter shunt can’t even accurately see it or count it. The Smartgauge will however track its own miniscule consumption, over time, even when a traditional Ah counter can not.

The Smartgauge self consumption is less than 5mA (0.005A) when the display is asleep and just 15mA (0.015A)when the display is lit.

In 24 hours the Smartgauge consumes only 0.12Ah. In an entire week it consumes just .84Ah.

Bullet Point: A traditional battery monitor, using a 500A/50mV shunt, does not have the resolution to track the consumption of the Smartgauge.

Because the Smartgauge tracks voltage, not Ah’s, it can actually track its own self consumption. The self consumption of the Smartgauge can actually be less than a flooded batteries own self discharge in warm weather.

EGREGIOUS WEB SITE PLUG:
Please remember this FREE web site is 100% supported by you my readers. I do not have annoying advertising or charge a membership fee. I try very hard to keep this site FREE but it is becoming harder and harder to do. Help grow and support this site by making a donation:

Donate

I have also added some products to the site to help support it. You can actually  buy the Smartgauge right here on this site. Remember where you read and learned about this product if you choose to buy one.

If you like this resource please do your part to help support it and keep it growing.

Smartgauge Terminals

Wiring:

GND = House Bank Negative Terminal
B1+ = House Bank Positive Terminal (FUSED within 7″ of battery bank)
B2+ = Start/AUX Battery Positive Terminal

Relay / Alarm Connections:

The Smartgauge also has the ability to drive external relays, alarms etc.. There are many uses for the relay ports and it offers many programing choices for the relay driving terminals.

NO = Normally Open Relay Terminal
COM = Neg Relay Terminal
NC = Normally Closed Relay Terminal

IMPORTANT NOTE: The max permissible load on any of the relay terminals is 500mA or 0.5A. If you need to drive more current, an external relay/contactor, with coil loads under 500mA, needs to be used. The maximum voltage across any of the alarm terminals is 48V…

10 Smart Gauge

Wire Gauge Confusion

There is a lot of confusion around which size wire to use when installing the Smartgauge. The actual manufacturer states that 18AWG is a bare minimum for wiring the Smartgauge. They also say that bigger is always better and originally indicated to Balmar that 14AWG should be used. As can be seen in the screen shot of the original Smartgauge manual.

Early Smartgauge manuals suggested 14AWG as seen in this image. 14AWG is what we at Compass Marine Inc. have used on every single Smartgauge installation. Typical of many manufacturers edits to manuals get made or they are not as clearly researched as they should have been by the individual making the edits.. On the hard drive here, we have no less than three Smartgauge manuals one suggesting 14AWG, one suggesting 16AWG and yet another suggesting 18AWG.

18AWG is the bare minimum. 16AWG is a happy medium and meets ABYC standards and 14AWG is even better and it fits near perfectly into the terminals.

11 Smart Gauge

The Results

In this image I am testing the Smartgauge with a 400Ah LiFeP04 battery bank. This is the only type of battery it failed to track accurately. Not a big deal as it was never designed for Li-Ion batteries and very few boat owners use LiFePo4 at this point in time.

I found it quite interesting that, while trying to find the actual capacity of some of the used lead acid batteries, the Smartgauge was already accurate by the second cycle and I was on my third complete discharge capacity test before finding an accurate new 20 hour rating for the battery to test it.

How accurate? It is tough to say precisely because I really don’t know how much I trust the Ah counters. Suffice it to say it was most likely as accurate as the Ah counters and probably below a 3% variation in SoC. I don’t have the test equipment resolution to make claims of 1% like EnerSys does, but even if under 5% this is simply outstanding.

The Smartgauge was lining up with the Ah counters, once the banks were well calibrated to the Ah counters (arghh what a process), to under a 2% – 3% variance. In many cases the Smartgauge beat me to the actual SOC. The Smartgauge found the SOC of the used batteries faster than I could by conducting actual physical 20 hour capacity tests. This is truly amazing.

The Smartgauge seems to work as advertised on GEL, AGM and FLA batteries in discharge mode.

What does that mean?

It means that I did see the Smartgauge get a bit confused when the bank was being charged. It can’t really track the capacity of a battery charger now can it…? However we are only talking about 10-12% variation from the Ah counters during charging, and not a huge deal when you consider how simple this battery monitoring unit is. Another issue with tracking SoC during charging is charge efficiency variations, so it was much easier to do this testing on the discharge side of the equation.

As soon as the charge source was discontinued, the Smartgauge fairly quickly identified the accurate SoC of the bank, and was back within approx 2% – 3% of the two painstakingly calibrated Ah counters.

WHAT THE SMARTGAUGE DOES:

  1. It tracks the voltage of the battery bank up to 1500 times per second and over time learns bank behavior, with no human intervention & no complicated programming. As time goes on it gets more and more accurate. This is good!
  2. It needs a good three to four deep-cycles for it to hone in on SoC. The longer it remains connected the more accurate it gets. I attempted 5-8 cycles on each bank beyond the capacity tests.
  3.  It provides voltage of the HOUSE and START/AUX banks in 0.05V increments.
  4.  It identifies SoC of the HOUSE bank irrespective of age or condition.
  5.  It requires no programing beyond selecting the battery type and wiring it directly to the battery positive and negative terminals of the HOUSE bank.
  6.  It removes the guess work and tediousness of programing a traditional Ah counter.
  7.  It is the easiest to use battery monitoring unit I have ever used or installed.
  8.  It works with either 12V or 24V banks and automatically detects this when connected.
  9.  It offers low and high voltage alarm relay trigger ports. These ports can even be used to start a generator, if your vessel is so equipped.
  10.  It requires no shunts or heavy gauge wiring and installs with simple 14GA wire. No battery lugs to crimp.
  11.  It tells you all you really want or need to know in order to maximize your battery banks cycle life, the state of charge. It really does not matter what your capacity is just that what ever it is, you are not constantly pulling the bank below 50% SoC.

Pro’s & Cons

Pro’s:

  • Easiest to use of any battery monitoring device
  • Easiest to wire of any battery monitoring device
  • Lifetime accuracy with no reprogramming
  • Simple – SoC is really all you need to know
  • Accurate – More accurate than an Ah counter
  • Can track its own very small self consumption
  • Offers alarm or gen start relay ports in both normally open and normally closed
  • No human intervention beyond selecting the battery type
  • Very low self consumption
  • Truly a plug & play battery monitoring unit
  • Can track miniscule parasitic leaks / loads that shunt based devices can miss

Con’s

  • Non standard hole cut out / display size
     Face Plate = 4 3/8" X 3"
     Cut Out = 3 3/4" X 2 1/2"
     Rear Clearance = 1" plus wires
  • No amperage display (some owners like this)
  • Not as pin point accurate during charging as it is when discharging
  • Price – More money than some Ah counters but less than many others

MarineHowTo.com Overall Rating = TWO THUMBS UP!!!

If I had three thumbs this product would get all three! The sheer simplicity and accuracy of this product are outstanding and I really did doubt it, I was proven wrong…
What matters most to your batteries is your depth of discharge or state of charge. The Balmar Smartgauge does this accurately and simply! Hands down the Smartgauge is the easiest SoC meter we know of.

Good luck & happy boating!!

12 Smart Gauge

Let’s Keep This Site Running!

Like what you saw or read? Would you like to see more articles like this? Is so feel free to donate, support the site and keep it growing. I am trying my hardest to keep this information FREE. If you liked it, learned from it or I saved you some money feel free to make a small donation, that’s all I ask.

Click the DONATE button below if you would like to make a donation.

Donate To Marine How To!

The post Balmar Smartgauge Battery Monitoring Unit appeared first on Marine How To.

]]>
https://marinehowto.com/smartgauge-battery-monitoring-unit/feed/ 1
Installing A Battery Monitor https://marinehowto.com/installing-a-battery-monitor/ Wed, 08 Apr 2015 05:56:10 +0000 http://beneriksen.com/MHT/?p=11092 Battery Monitor Diagram This article features the older Victron BMV-602. The 602 has been replaced by the BMV-7oo series. Everything in this article is still relevant to the current series of BMV monitors. Please support MarineHowTo.com by purchasing your Victron battery monitor through us! This web site cannot remain free [...]

The post Installing A Battery Monitor appeared first on Marine How To.

]]>

Battery Monitor Diagram

This article features the older Victron BMV-602. The 602 has been replaced by the BMV-7oo series. Everything in this article is still relevant to the current series of BMV monitors.

Please support MarineHowTo.com by purchasing your Victron battery monitor through us! This web site cannot remain free without your support!

MarineHowTo.com – Shop Victron Products

Installing A Battery Monitor:

The battery monitor is a very useful tool for a boat-owner who has to survive on battery power. When properly installed & properly calibrated they can extend the life of a battery bank.

Allow me to re-emphasize:

WHEN PROPERLY INSTALLED – About 90% of Ah Counters I come across are NOT properly installed & wired.

WHEN PROPERLY CALIBRATED – About 98% of Ah counters I come across are NOT properly calibrated/programmed.

When not properly installed, and kept well calibrated, Ah counters can be horribly inaccurate…

Rule #1 for most tradittional Ah counters: Disable the “auto-sync” feature and use manual “known-full” re-sets.

What is known-full?

  • Voltage at 14.4V+ =
  • Net accepted current less than 1.5% of Ah capacity =
  • Okay to reset to 100%

NOTE: Battery voltage should be at absorption level not a float voltage when performing a manual known-full reset. If you have been at a dock at float voltage for multiple days then it is safe to assume you are full and a manual reset is fine. When out cruising use absorption voltage.

FACT: From the day you install your bank the physical Ah capacity is ever changing. The biggest problem with traditional Ah or Coulomb counters is keeping them accurate with the batteries physical condition. As batteries age their capacity changes, it is an ever moving target, so the 100Ah battery you bought three years ago may now only be a 75Ah battery.

If your battery monitor is still programmed for a 100 Ah capacity, and you are drawing 50% of the assumed Ah capacity out of it, based on this 100Ah rating, you are really now drawing the bank to just 33% SOC. Oops….

Inaccurate assumptions can lead to erroneous data:

You had 100Ah programmed into the Ah counter. Your battery, due to age and use, is now 75Ah’s. You now draw 50% of 100Ah’s out of the battery, except the battery is only really 75Ah’s and you wind up at;

100Ah Assumption = 50Ah Removed:

75Ah – 50Ah = 25Ah = 33.3% Actual SOC

Actually if you threw Peukert’s exponent into the mix you may actually be lower or higher depending upon the actual load at which it was drawn. Holy cow this is confusing….!

This is just one example where an Ah or Coulomb counter can become inaccurate in relation to the actual battery bank. These devices are not plug & play and are only as smart as you make them. Please be aware of this.

Coulomb or Ah counters count Ah’s very, very accurately. However, they have no clue about your banks physical Ah capacity or its actual state of health. It is up to you, the owner, to tell it the bank capacity and program for this as accurately as you possibly can. The new Balmar SG200 does provide a state of health figure, and works quite accurately.

With traditional Ah counters, a trick many of us in the industry use is to start with a slightly lower programmed Ah capacity than the bank is rated for. So for the 100Ah battery I might initially program it at 95Ah’s so the owner is never actually drawing to 50% SOC that first year (self protective feature). The next year I might remove another 3% – 8% off the capacity etc. etc.. These are just rough guesstimates, for most, unless you have the capability to run a true capacity test. On many banks it may tend to correlate marginally, but don’t expect guestimates to be perfect.

I also count on the fact the battery is being drawn at average discharge currents that are below the rated 20 hour load. This can lead to slightly more bank capacity, but again this gets confusing for the average boater to understand, especially when we bring our good friend Mr. Peukert into the equation.

The only way to accurately know your battery capacity is to perform a constant current RC test or a physical 20 hour discharge capacity test. This is complicated, time consuming, and very few boaters are willing to do this. To be honest I don’t know of a single boater who actually has conducted an accurate 20 hour load test.

Ah / Coulomb counters rely on the actual 20 hour capacity figures being accurate, to actually remain accurate for SOC, over time. Without an accurate 20 hour capacity figure there is no real SOC accuracy in the Ah counter, only a close-enough or hip-shoot range. This may not be half-bad but is a a decent margin away from yielding an accurate SOC. Just be aware of this when you are assuming your Ah counter is accurate, in relation to your bank.

Unfortunately the scenario laid out above, for a traditional Coulomb/Ah counter, is just one of the many ways these devices can become tripped up and lead to inaccurate SOC readings. There are other gotcha scenarios that can rear their ugly head too. Please take the time to read the sister article to this one:

Making Your Battery Monitor More Accurate (LINK)

Gotcha’s may include shunt wiring mistakes, battery temperature, charge efficiency calculations, PSOC use, varying charge rates, Peukert, false re-syncs caused by solar or wind, changes in physical Ah capacity, changes in charge efficiency as the battery ages, incorrect programming etc. etc..

Despite all the way Ah counters can get tripped-up I suspect the big reason they usually lead to longer bank life is simply because they make owners more aware of their bank. More awareness of your bank and charge source performance is important. More awareness can play a larger role than we may otherwise assume.

For years I’ve been trouble shooting and helping owners try to use these devices in a smarter and more accurate manner. Unfortunately it often feels as though I beat the drum inside a sound proof room and no one can hear it. When owners understand how an Ah counter works, they can be very useful. Most all of my customers have had longer battery life as a result of an Ah counter.

With new battery technologies costing three to ten times what wet cell technology does and many boaters moving to newer technologies such as GEL, AGM, TPPL AGM and LiFePO4 Li-Ion batteries, accurate or as accurate as possible monitoring, of an expensive bank, is almost a prerequisite.

People often ask me questions about how to install a battery monitor so I took some time and tried to make it simple. They are actually easy to install but there are a couple of gotcha traps that you may find your self falling victim to.

There are a fair number of Traditional Ah counting battery monitors on the market;

  • Blue Sea Systems
  • Xantrex
  • BEP
  • e-Xpert
  • Victron
  • NASA
  • Philippi
  • BM Pro
  • Cristec
  • Bogart Engineering
  • Mastervolt
  • etc. etc..

There are also two newer generation battery monitors that don’t require continual programming and can remain accurate with your bank over their life.

  • The Balmar Smartgauge = SOC and Voltage Only
  • The Balmar SG200 = SOC, SOH, Voltage, Current, Multiple Shunt Capability, Multiple Display capability etc. etc.

The Victron units, featured in this article, are some of the easiest to install and also some of the least expensive. This does not necessarily make them the best or most feature rich but they certainly are a good dollar value.

I personally believe the majority of boat owners would be better served, & less confused, with a Balmar Smartgauge or the new Balmar SG200 (shunt based) monitors rather than trying to keep a traditional Ah counter accurate. The Smartgage & SG200 require no difficult programming, beyond selecting battery type, and they can both track the battery as it ages automatically with no owner intervention. The original Smartgauge displays only voltage and SOC and is plain Jane simple. The new Balmar SG200 reports SOC and SOH (state of health), amperage, voltage etc.. The fact that the new SG200 can track SOH is a complete game changer and it is accurate on LiFePO4 as well.

I currently use the new Balmar SG200 on my own boat and just recently switched from a Xantrex LinkPro, which was a realy PITA for tracking LiFePO4.  The SG200 has proven to be extremely accurate on LiFePO4.

The Victron monitors are a significantly better deal than a Xantrex, & most others, so if you want a traditional Ah counter, the Victron’s make a great value buy.

Three Generations

From left to right I have three generations of battery monitor represented. The original Link 10 was manufactured by Cruising Equipment Company and they really started a good thing. Despite many of the “LINK” products tending to be a little buggy they were generally well regarded and loved by boaters.

Somewhere along the way Cruising Equipment became Heart Interface and then Xantrex bought Heart Interface. Xantrex then found TBS Electronics in the Netherlands and began importing and re-branding the TBS made monitor as the Xantrex XBM (pictured in the middle). The XBM was the identical battery monitor to the Victron 501 and was a very, very reliable device. It also offered a computer interface option, something new to battery monitors at the time.

Eventually Xantrex made the switch to all TBS built battery monitors such as the current Link-Lite and Link-Pro. They have proven to be solid though very expensive units.

About the time Xantrex signed on to re-label the TBS monitors Victron found a new manufacturer to build their units, though I don’t know who it is. The Victron BMV-602S is pictured on the right and bears little resemblance to the TBS built monitors.

Victron BMV-602S Shunt

The Victron shunt is quite unique because they have added a printed circuit board to it so that wiring is much easier. Shunts are not really directional devices but because Victron added the printed circuit board / UTP cable connector it does make it directional.
The shunt is labeled -LOAD and -BATTERY. DO NOT wire this backwards or it will not work properly. The side labeled -BATTERY must be connected to the battery neg post and the side marked -LOAD must see the system negative loads.

This monitor is VERY easy to install. It has just two wires, a UTP cable & a power cable. The UTP cable is 10 meters or roughly 33 feet long, allowing plenty of display mounting options. The UTP cable is the only wire that needs to be run the monitor display. It’s literally “plug & play”. The UTP cable is very similar to a phone cable, only slightly more robust. The red power supply wire simply connects to the positive battery post and the +B1 terminal of the Shunt.

This shunt has two power supply inputs, +B1 & +B2 for two banks, as it can monitor the voltage of a second start/reserve bank.

Schematic

If you click the image it will make it larger and easier to read. I tried to wire this up on the bench to replicate what one might see on-board a boat. This is explanation is just far to difficult to illustrate on a boat. I actually photographed this quite a while ago, on a boat, and decided not to use any of the photos.

Obviously a house bank would be comprised of multiple batteries but the point is the same. A single battery was used for illustrative purposes only. If your boat is not wired with a positive or negative distribution buss it can help organize the wiring tremendously.

I have also shown a Blue Seas double MRBF (marine rated battery fuse) block on the battery post. I use one for the house bank and one fuse for the alternator which I generally always wire direct to the house bank.

Loads OK – Loads Not OK

OK here’s the gotcha we talked about. Nearly every instance of trouble shooting battery monitors I’ve come across can be lead directly to where you’ve connected your DC negative wires.

A shunt reads the loads on the system as measured as voltage drop, in mV levels, across the shunt. This shunt is a 500 amp 50 millivolt shunt. This means that at 500 amps there will be a 50 mV drop across the shunt. Knowing this the monitor manufacturer can make the display correspond to any load from 0 to 500 amps or 0 to 50 mV.

If any load, such as a bilge pump ground, is wired ahead of the shunt or on the -BATTERY side of it, the load will NEVER be seen, recorded or measured by the monitor. All DC loads on-board should be read by the battery monitor. Inverters, battery chargers, alternators, solar, wind, DC distribution panel, LPG detectors etc., etc., on and on.

Keep in mind that many marine alternators are case grounded and thus the system ground, which on most boats is the engine block, is the ground path for the alternator. While I much prefer an isolated ground for alternators many boats just do not have alternators with this feature and they use the case as the ground. Due to this, the ships main ground connection should be connected to the -LOAD side of the shunt and NOT ahead of it or on the -BATTERY side.

Anywhere you see a green arrow is safe to connect DC negative load wires. The ONLY wire that should connect to the battery is a single negative jumper wire from the -BATTERY side of the shunt. No other wires should be connected on either the neg battery post or the -BATTERY side of the shunt.

Reading Charging Current

In this photo I have a Guest battery charger connected to the system. The battery monitor is reading a positive +5.68 amp charging current, as it should. Take note of the location of the black alligator clip in the next picture for a good example of why it really DOES matter where your negative system wires are connected.

Measuring Nothing !!

The only thing different in this photo is the location of the chargers negative lead. The charger is still pumping out about 5.68 amps but because the negative lead is on the wrong side of the shunt it cannot be captured or measured by the shunt. If it can’t be seen/captured by the shunt it can not be logged or read by the battery monitor.

IMPORTANT: Don’t jump the shunt!

Any wire that winds up on the BATTERY TERMINAL or BATTERY SIDE of the shunt I refer to as a SNEAKER WIRE.. Just say no to SNEAKER WIRES..

Whether you are drawing a load or feeding the system a charge current the negative *load wires must be on the load side of the shunt not the -BATTERY side.

NOTE: The term “load wires” applies to charging wires and discharging wires

Battery Fuses

I am a strong believer in over current protection or fusing of battery banks, even start banks on smaller auxiliary engines, despite this not being a requirement to meet in ABYC E-11.

This product is called a battery terminal fuse.. These fuses are meant to protect the wiring from dead shorts and are easy to install. I use the double version for the bank and the alternator wire. As always choose your fuses based on the wire gauge you are protecting.
Every positive wire connected to a batter should be fused within 7″ of the battery or as close as you can get. This includes inverters, alternators, battery chargers, bilge pumps or stereo memory wires.

Interestingly enough the black fuse holder for this Victron battery monitor is 7″ from the ring terminal for the battery post.

Making The Connections

This is the back of the BMV-602S. There is a port for the computer connection kit, which can be purchased at additional cost, an alarm and the UTP cable connection port.

Plug & Play

Once you have chosen your location, drilled the hole for the monitor and run the UTP cable, simply plug it in to the socket. If you can plug in a fax machine you already know how to connect the monitor to the shunt. This could not be any easier. Kudos to Victron for making this so easy!

Shunt End

Now plug the UTP cable into the shunt. Easy..

Click !

Click, that’s it!

Power Supply Wire – Pin End

This is a close up of the crimped pin for the power supply cable. I would leave well enough alone and not cut the wire shorter unless it is absolutely necessary. This pin fits nicely in the shunt socket.

Use A Small Screw Driver

Use a small flat bladed screw driver and simply slide the orange tab towards the shunt to open the clamping mechanism. In this photo I have not yet slid the orange tab towards the shunt.

Slide Back The Orange Tab

With the tab slid backwards simply push the pin into place. It will slide all the way into the socket just about up to the plastic.

Older Link 10

Here’s a prime example of why I like the Victron for simplicity. This is an older Link 10 and it requires five wires to be installed and then screwed down at the monitor end. This is certainly not difficult but requires some level of precision, access and can be a tad tedious.

The current Xantrex monitors, Link-Lite & Link-Pro, still connect exactly like the old Link 10 and on top of that they cost more money.

500A x 50mV Shunt

Rather than a shunt mounted PCB, like Victron has chosen, which offers true “plug and play” simplicity, the Link series shunts, & many others, still require wire stripping, crimping, and the physical need to manually wire the shunt. The blue & red wires from the previous photo, and not pictured here on the shunt, go to the positive battery post with in-line fuses.

Again, these are not difficult to wire just more tedious. I still have a Link-Pro on my own vessel, and I am of the opinion that the Xantrex units are slightly more robustly built, but you certainly pay for that quality, which may not even be necessary.

As of this writing the Xantrex Link-Lite cost $223.99 at Defender. That however is not the whole story. The Xantrex monitors do not come with the wire to hook it up, just the shunt. The “Xantrex communication kit” or roughly translated to as; multiple twisted-pair wire runs another $104.99 at Defender. The Victron units come complete & ready to install.

A Xantrex Link-Lite will cost you $233.99 + $104.99 = $328.98 A Victron BMV-702 will cost you about $100.00 or so less. They both will monitor the voltage of a second bank but the Victron is costs less and does more. It will also allow the connection of a computer which the Link-Lite will not do.

That being said if you don’t need to monitor the voltage of a second bank, really not all that necessary if it is just a starting or reserve bank, then Victron also offers the BMV-700 single bank monitor.

Measuring Voltage

Battery monitors can display many different values on the screen including voltage, amp hours consumed, amperage, state of charge and more.

The “V” screen, as shown here, measures voltage for the house bank. This voltage reading is showing the battery being float charged.

This particular model, the Victron *BMV-602S, can monitor the voltage of two banks as can the Xantrex Link-Pro & Link-Lite models from Xantrex.

*NOTE: The BMV602S has been replaced by the BMV-702

Measuring Voltage Bank 2

The “VS” screen tells you the voltage of a second bank. Seeing as I used one battery for this illustration the meter is showing the same voltage as the the “V” screen.

I should mention that there have been a couple of people on the boating forums complaining that the V & VS screens, even when fed from the same source voltage are not in sync or well calibrated. This sample happens to be properly calibrated. An experienced sailor and electrical engineer on SailboatOwners.com has had two units with voltage readings from .01 – .03 volts off when sensed from the identical source.

Is a variance of .01 to .03 volts a big deal? No, not at all, but I just wanted to make you aware so that you don’t panic if your V & VS screens do not completely agree. Victron might need to do some better QC with the V & VS screen readings!

Measuring Amps At Rest

The “I” screen shows current in/out. This shot is showing no loads or charge current.

Measuring Current Flow

This “I” screen shot shows the monitor measuring a negative load. A negative load is denoted by the – symbol.

Measuring Charge Current

This screen shows a charging current as denoted by the lack of the symbol..

Amp Hours Consumed

This is the CE or Consumed Energy screen. It shows the amount of amp hours consumed from the battery. After the battery receives a full charge this readout resets to 0.0 Ah denoting a fully synchronized monitor.

If you draw a current of 10 amps for a period of 4 hours you will show -40 Ah on the CE screen.

State of Charge

This is the SOC or State-of-charge screen. This screen is the best way to monitor the SOC of the battery with this monitor. This screen is only useful provided you have programmed the monitor correctly, it’s synchronizing the way it should, and is wired properly. This readout calculates the amount of energy available in the battery and is Peukert & CEF / Charge Efficiency & capacity corrected. The screen ranges from 0% = dead to 100% = full.

Counting amp hours is ok but is most often is not an accurate reflection of the true state of charge of the battery. For example if the battery is drawn down heavily & at a high rate of current you will get less usable Ah’s than its rating. If drawn slower than the 20 hour rating you can get more Ah’s out of it.

The SOC screen computes for the Peukert exponent and CEF, the Ah screen does not.
Please take the time to read the manual for these monitors as they are generally more difficult to program and master than the actual installation!

To keep your monitor accurate:

  • Wire it correctly
  • Program an accurate Peukert exponent for the bank
  • Program an accurate Ah capacity for your bank
  • Program an accurate charge efficiency
  • Turn OFF or program around auto-sync
  • Use manual known-full resets
  • Reset as often as possible when you know the bank is full
  • Each year find your new 20 hour Ah capacity or reduce capacity with a hip-shoot guess

IMPORTANT: Reserve Capacity, Reserve Minutes or an RC rating are NOT the 20 hour Ah capacity!

NOTE: Most healthy flooded lead acid batteries need 115% or more charge put back in, compared to what you took out. This means a charge efficiency of 85% is often more accurate than 90%. Check with your battery manufacturer to get the most accurate charge efficiency number you can get. For more information & detail on this complicated subject see: Programming A Battery Monitor

Good luck & happy boating!

Let’s Keep This Site Running!

Like what you saw or read? Would you like to see more articles like this? Is so feel free to donate, support the site and keep it growing. I am trying my hardest to keep this information FREE. If you liked it, learned from it or I saved you some money feel free to make a small donation, that’s all I ask.

Click the DONATE button below if you would like to make a donation.

Donate To Marine How To!

The post Installing A Battery Monitor appeared first on Marine How To.

]]>
Making Your Battery Monitor More Accurate https://marinehowto.com/programming-a-battery-monitor/ Wed, 08 Apr 2015 03:18:33 +0000 http://beneriksen.com/MHT/?p=11555 Program The Ah Capacity This article features the older Victron BMV-602. The 602 has been replaced by the BMV-7oo series (700, 702 & 712). Everything in this article is still relevant to the current series of BMV-7xx battery monitors. WARNING: This article is long and in-depth. Please do [...]

The post Making Your Battery Monitor More Accurate appeared first on Marine How To.

]]>

1

Program The Ah Capacity

This article features the older Victron BMV-602. The 602 has been replaced by the BMV-7oo series (700, 702 & 712). Everything in this article is still relevant to the current series of BMV-7xx battery monitors.

WARNING: This article is long and in-depth. Please do not misconstrue the points here and think we are trying to talk you out of an Ah counting battery monitor, nothing is further from the truth. Coulomb counting battery monitors give you great information but we also strongly believe owners should better understand;

#1 How they work

#2 How to make them work more accurately

First, let’s preface this article by saying that; I am personally big fan of Ah counting battery monitors. They can give an owner tremendous amounts of excellent and useful data at a glance or with a tap of a button. They can teach you about charging performance, on-board energy usage and even show you historical data. The newer models, such as the Victron BMV-712 (LINK) or the new Victron SmartShunt even have built in Bluetooth.

Where Ah counters frustrate myself, our employees and the average boat owner, is in the ability to accurately track SoC (State of Charge) for the way a cruiser typically uses their vessel.

This article is primarily written for Lead Acid Batteries

LiFePO4 is easier to track:

Battery Bank size = input total Ah.
Set charged voltage to 0.2v less than  the chargers absorption voltage.
Setcharged detection time to 3 minutes
Se tail current to 2%.
Set Peukert to 1.03.
Set Coulombic efficiency (CEF) to 99%.
Set Discharge Floor to 10 or 20%(your choice how deep you want to go
Do not use “starts synchronized” unless the batts are already at 100% SoC”

EVERYTHING BELOW THIS POINT DEALS WITH STATE OF CHARGE (SoC) TRACKING PERFORMANCE

When I first wrote the article on installing and wiring of a battery monitor, (See; Installing a Battery Monitor) I had originally intended to write this sister article to it, but never got to it. Unfortunately this is the article that should have been written first as it’s actually the far more important part of installing and using a battery monitor.

The SoC (state of charge) tracking problems with Ah counters are well known among us electrical geeks, throughout industry, military etc.. Unfortunately no one ever really discusses it frankly or in an in-depth manner. While Ah counters are extremely accurate at counting ampere hours (Ah) it is what the Ah counter is counting these ampere hours against, an ever moving target called a battery, that creates the problems. This article is going to show you why PROPER PROGRAMING PAYS.

To sum it up in simple terms we have yet to come more than a handful of properly installed and properly calibrated Ah counters. Most of the time the failure of the install is in the programming, typically a lack thereof. Howeverthe shunt wiring is confusing for some boat owners who conduct a DIY install as well as some professionals. I know this sounds shockingly surprising, but when you fully understand and comprehend how Coulomb counting works, and how a battery ages, it becomes a lot clearer as to why such craziness can be stated.

As a marine electrical business we are physically set up to test batteries for their true Ah capacity. Unfortunately in this industry I can count on one hand the number of marine electrical contractors or business that are set up to do this. To track this performance we simply note the SOC screen, and energy consumed screen on the battery monitor, when the batteries are removed from the vessel for testing.

This is simple; We have not yet seen an Ah counter’s SoC be within 10% of actual tested capacity and most are far worse than a 10% error. Is this the fault of the Ah counter? No, it’s not. It’s the fault of improper use, lack of understanding and poor programming.

FACT: If you do not keep up with programming your Ah counter, on a routine basis, Ah counters do not theoretically get out of sync with your battery, they physically get out of sync with your battery. This is a real problem that does happen, not a made up problem that might happen.

FACT: Ah or Coulomb Counters are very accurate at counting Ah’s but they do not track changes in your batteries health. They are simply calculators that rely on proper programming to yield a more accurate output.

This article is not going to explain the actual button pushes to adjust your particular monitor, there are far too many products out there to do this with, but we are going to discuss the importance of each piece of the programming puzzle, and why that part is critical to the performance of your Ah counter. Not all monitors offer all the programming features that may be discussed here. For example, the earlier Victron BMV-600 & BMV-602 offered no temperature adjustments or temp sensor options, newer models do. Some Ah counters, early Victron’s and Xantrex battery monitors, offered an automatic calculation for charge efficiency and for others you’ll  need to manually program the charge efficiency into the unit.

Bare Minimum Programming Steps:

-Program an Accurate Ah Capacity of Your Bank (best to obtain through testing)

-Program Your Banks Peukert’s Constant (obtain from battery manufacturer or calculate)

-Program Your Banks Charge Efficiency (obtain from battery manufacturer)

-Program Your Battery Temp (Should be done at least monthly if temps change, or use model with temp sensor)

The Battery, an Ever Moving Target

This section deals with the battery and how it changes with age, temp or other external factors as related to how an Ah or Coulomb counter attempts to track battery SoC.

#1 Battery Capacity:

The amp hour capacity of all deep cycle lead acid batteries is an ever moving target and the only way to track this moving target is for you to properly program it. The typical Coulomb counting battery monitor cannot, and does not, track changes in capacity, changes in charge efficiency (though some can) or changes to Peukert. It is the job of the owner to track these changes and update the programming of the monitor so that it has a more accurate data-set to calculate from.

Unfortunately deep cycle batteries never stay in one spot for very long and from day one they begin changing. How fast the capacity degrades is partially up to the banks owner and partially due to cycles, temperature and a host of other factors that all converge to eat away at your batteries actual Ah capacity compared to its rated Ah capacity. Different battery technologies will also yield differing slide-rates into the abyss. Certain battery technologies will also cycle-up to capacity faster than others? Cycle-up to capacity? Yes, cycle-up.

Incorrect assumption #1:

My batteries are 100Ah, because the sticker says so.

Rule #1 for Ah counter accuracy; never assume your capacity. Typical flooded lead acid batteries won’t deliver the full 20 hour capacity right out of the box, as many often assume they do. Batteries, especially deep cycle thick-plate flooded batteries, take as many as 50+ deep-cycles to attain their rated capacity. The problem is that many boat owners have already worn them out or ruined them before they’ve actually had a chance to cycle-up to full rated capacity. In other words many owners never even attain the full rating of the battery due to abuses.

Programming in the full rated sticker-capacity of the battery, without first knowing if that rating is accurate or true, may not be accurate. The sticker is good guidance, you as the owner would be best served to ascertain if that guidance is in fact correct, especially if you want any level of accuracy from your Ah counter.

AGM and GEL batteries cycle-up to rated capacity in considerably less cycles due to the way the battery plates are formed. Most commercially available AGM’s will cycle to full rated capacity in 3-7 deep cycles & GEL’s often within 30 cycles..

The problem is that not all batteries you purchase will always deliver the rated capacity. Often they are within 1-3% of the rating, some exceed it slightly, but we have tested many brand new VRLA batteries, or just broken in batteries, that are 4-15% off their claimed Ah capacity figures, right off the shelf. While 1-3% is acceptable 4-15% off rated capacity is not and can lead to Ah counting and SoC prediction problems.

Deep cycle flooded batteries are even more of a mystery, as related to Ah capacity. Identifying Ah capacity on flooded batteries is more difficult because of the way they slowly cycle-up, level out, and then begin trending down. What’s an owner to do, if you don’t physically capacity test your batteries? How will you know the actual capacity figure to put into the battery monitor? The simple answer is that, you don’t. Is this bad? Not necessarily with new batteries, but as they age it is.

The Typical Ah Counter is a Simple Calculator

The Ah counter is a factual item, like a calculator, and it is important to remember this. In fact, it is a calculator, and that is really all it is. The Ah counter relies on your input being accurate, so it can display a useful calculation. If you wanted to know 9X9=XX on a calculator you would type in 9X9 hit = and you’d get the answer of 81. A battery monitor is no different, it is nothing more than a calculator.

If you plug in 200Ah’s, for Ah capacity, it believes what you told it to be correct, even if your batteries are only 160Ah’s in their current state of health. Just like a calculator the Ah counter will give you accurate information based on what you have plugged into it. If you accidentally keyed in 6X9 and got 54 would that be the correct answer for 9X9?

Programming in erroneous data results in incorrect answers…

Programming in a correct Ah capacity is really just the tip of the ice-burg, but perhaps the most important part…

SITE PLUG: Please support MarineHowTo.com by purchasing your Victron battery monitor through us. This web site cannot remain free without your support.

Shop Victron Products

Cycling Up To Rated Capacity

This is a graph of cycle life to delivered capacity for a flooded deep cycle lead acid battery we use in boats quite often. Take a look at how capacity changes with life and cycles. Also remember that in the lab they get 700+ cycles but in the real world most boat batteries are destroyed in well under 200 cycles.

What is Ampere Hour Capacity?

The Ah capacity of deep cycle marine batteries is based on the BCI (Battery Council International) 20 hour discharge test. For a 100Ah battery this means it should deliver a 5A constant load, at 77F, for 20 hours, before the loaded terminal voltage falls to 10.5V. This is your ideal factory rated Ah capacity, but you’ll notice two things.

The first thing that stands out is the 5A constant-current. In order to meet the 20 hour capacity test figure, the current is held perfectly stable, even as the voltage decays/falls during the test.

Effect of Load on Usable Capacity

As a battery discharges, the load it is discharged at will change the usable capacity of the bank, at that load. The only way you can get 20 hours of run time, at 77F, is at the 20 hour discharge rate. Any load greater than the 20 hour load,  the battery will not deliver its full rated capacity. On the flip side, if we draw the battery at less than the 20 hour rate we can extract slightly more usable Ah capacity out of it.

I prefer to call this the Peukert effect. I hesitate to call it Peukert’s law because it is not a law, like Ohm’s Law is. Peukert is an effect that changes the usable capacity based on rate of discharge.

In order to test the battery at the 20 hour rate, and do so accurately, you ideally need to hold the discharge current steady as the voltage decays to the 10.5V cut off point. This is a tedious and imprecise process for the average DIY. There is test equipment available to conduct accurate 20 hour Ah capacity tests but they typically begin in the four figure price range.  A 20 hour test is just as it implies, 20 hours long, not including the time it took you to charge the battery and get it to a controlled temp of 75-80F.

“How do I determine my batteries 20 hour discharge rate?”

This part is easy, you divide your batteries 20 hour Ah capacity by 20, eg: 100Ah ÷ 20 = 5A. If you had a 210Ah battery the math is the same; 210 ÷ 20 = 10.5A. If you want to test for Ah capacity, which is really the only test that matters for an Ah counter, then this is the formula for determining the constant-current discharge load you will use.

Effect of Temperature on Capacity

The second thing you will notice in a 20 hour rating is the 77F – 80F temperature. Just like the rate of discharge, battery temperature affects your usable Ah capacity. If you do not maintain a battery temp of 75-80F, during testing, you will not arrive at or get a very accurate 20 hour capacity. When conducting a capacity test, in order to properly program a battery monitor, discharge current and battery temp ideally need to remain constant & stable while the battery is discharged to 10.5V. You can always hip-shoot, make sure the battery is between 70F and 80F, and manually control the load to maintain as close to stable as possible, and you’ll wind up pretty close.

Inaccurate Ah Capacity = Bad Data

If you don’t start with a known accurate Ah capacity, your Ah counter cannot give you reliable or accurate information. At a bare minimum, for cooler climates, a once yearly 20 hour capacity test to 10.5V should ideally be conducted. In warmer climates, defined as average battery temps above 80F, bi-yearly is going to be a better choice.

“How can I conduct an accurate 20 hour capacity test?”

20 Hour Capacity Test:

#1 Fully charge battery, equalize if possible, then allow it to rest disconnected for 24 hours

#2 Make certain battery temperature is between 75F & 80F

#3 Apply a DC load that = Ah Capacity ÷ 20 (small light bulbs and/or resistors can work)

#4 Connect an accurate digital volt meter to the positive and negative battery terminals

#5 Start the DC load and a stop watch at the same time

#6 As battery voltage drops, during discharge, adjust the DC load to maintain as close to the C÷20 rate as is humanly possible

#7 Immediately stop the discharge test when battery terminal voltage hits 10.499V

#8 Note the hours and minutes of run time on the stop watch and figure your percentage of 20 hours that it ran. This is your batteries Ah capacity or state of health as a percentage. For example if a 100Ah battery ran for 16 hours it is at 80% of its original rated capacity. Flooded lead acid batteries are considered, by industry standards, “end of life” when they can no longer deliver 80% or more of their rated Ah capcity.

#9 Recharge the battery immediately at the 20 hour rate. Follow this up with equalization level voltage and measure specific gravity until all cells match. (EQ – not for non-Lifeline AGM or GEL). A long slow recharge can have a slight reforming effect on flooded batteries and can actually recover some lost capacity. It is not uncommon for a battery to have more capacity after a 20 hour test than it had going into it.

“But isn’t 10.5V bad for my batteries?”

A yearly discharge test, done correctly, is arguably less damaging than taking your battery to 50% SOC and leaving it in that range for a day or two, or the continual PSOC cycling the average boater thinks nothing of when cruising. Regular PSOC cycling is more damaging than a once or twice yearly Ah capacity test done correctly. A proper capacity test simply counts as another deep cycle and can actually revive some lost capacity.

“Twenty hours is a long time, can I conduct an approximate 20 hour capacity test?”

Approximate Capacity Test:

#1 Fully charge battery, equalize if possible, then allow it to rest disconnected for 24 hours

#2 Make certain battery temperature is between 75F & 80F

#3 Apply a DC load for 2 hours that = Ah Capacity ÷ 20 (small light bulbs and/or resistors can work)

#4 Allow the battery to rest for at least 10 hours at 75-80F (24+ hours is significantly more accurate)

#5 *Check the specific gravity or resting open circuit voltage and compare to the manufacturers SG or SOC to OCV tables

#6 Use basic math to determine the approximate Ah capacity. For example, a 100Ah rated battery has been discharged at 5A for 2 hours. This means so you removed 10Ah’s of capacity. If the battery was in perfect health specific gravity readings or open circuit voltage readings should show the battery at 90% SOC. *If SG and OCV only show the battery at 60% SOC then the battery has lost approximately 30% of it’s Ah capacity.

*This is an approximation only and not an accurate Ah capacity test. Variances can be anywhere from 10-18% off an actual 20 hour capacity test depending upon your particular battery.

CAUTION: The only time your batteries should regularly be taken below *12.1V is during a capacity test. For regular house use, at your average house loads, your deepest loaded voltage should ideally not dip below 12.1V or better yet 12.2V. Unless you are running short duration high load device such as an inverter, windlass, electric winches, bow-thruster, water maker etc. don’t let your bank voltage dip below 12.1V.

For certain situations, such as an off-shore passage or open ocean racing, discharging to 70-80% DOD is perfectly acceptable provided the batteries receive a proper 100% SOC re-charge as soon as you get to the destination. Discharging below 50% SOC on a regular basis, in a PSOC environment, drastically shortens battery life when compared to 50%.

*Firefly AGM, large format 2V or 6V batteries, & some GEL batteries would be an exception for regularly discharging below 50% SOC.

 

2

3TypicalProgrammedCapacity

Typical Programmed Capacity

Sadly this is typically how I see a good portion of battery monitors set up by using the stickered rating of the batteries. The typical battery monitor is initially programmed for say 400 Ah’s, as shown, and left there indefinitely.

Do you think that at year two, three, four, five, six etc. this bank still has 400Ah’s of capacity..?

What is Your Ah Capacity?

How can an Ah counter be accurate if your programmed Ah capacity is not accurate? The answer is simple, IT CAN’T BE.

Years ago Ah counter manufacturers were a bit more honest and forthcoming in their manuals about Ah capacity & testing for it. This image is from an old Link 1000 manual I had on my hard drive. As can be seen it is saying:

“To determine the actual amount of energy your batteries can store, you conduct periodic capacity tests. A capacity test should start with a battery that has been properly charged and equalized.”

Today this information has been summarily removed from nearly every Ah counter manual I have read. Frustrating? Yes.. Dishonest & misleading to leave this out? Absolutely!

They Even Explained How to Capacity Test Your Batteries

Again, this was in a nearly 18 year old Link 1000 manual. I don’t know of any current Ah counter manuals that include this information today.

More Realistic Programmed Capacity

If you are testing your batteries yearly or bi-yearly the programmed capacity will look more like this…

WARNING: Do not duplicate the decline in this graph, it is for illustrative purposes only!

“So RC how can I program a decline without doing a capacity test?”

How do you predict the stock market?? The honest answer is, I don’t know. I don’t know because I don’t know how you treat, use or charge your batteries.

I have seen some boat owners ruin 6V golf cart batteries in 1 year while others get 12 years. Sadly I can’t predict that..

Honestly if I could predict the rate of decline for marine batteries on everyone’s boats I would not be sitting here typing this right now. I’d be putting buy orders on the stocks that would rise on Monday.

Having said that, programming in even a hip-shoot decline each year will result in longer battery life than no programmed decline at all. Will it be accurate? Not at all, but your batteries will be cycled less deeply as they age and as a result should last longer than no programmed decline at all.

Bottom line is that you really need to have some decline programed in to even remain in the ball-park, but no one can predict that.

4MoreRealisticProgrammedCapacity

5WhatsTheBigDeal

What’s the big deal if my Ah counters capacity does not match my batteries?

Let’s look at the case of this pair of “100 Ah” batteries. These batteries were barely three years old when I tested them for Ah capacity. They had a tested capacity of just 69 & 70 Ah’s respectively, as tested at 77F, under a 5A constant load. The owner of this bank still had the battery monitor programmed for 200Ah’s, as many boaters often do at year three.

If we add 69 Ah’s + 70 Ah’s we can see that his actual capacity, of this bank, was now just 139 Ah’s not the 200 Ah’s the owner assumed it was. Herein lies problem, the owner was still discharging this bank as if it was still a 200 Ah battery bank. D’oh!

Using -Ah’s To Track SOC = INACCURATE

This is a shot of one of my capacity tester screens after testing the battery pictured above.

To compound the issues with these batteries the owner was using the -Ah’s or consumed energy screen in order to discharge the bank to his assumed 50% SOC. Unfortunately this is not the correct screen for tracking SOC.

Why?

The –Ah’s screen on almost all Ah counters I know of does not compensate for Coulombic efficiency, temperature or Peukert. Only the % charged or the SOC screens actually compensate for the factors listed. As you know by now these factors affect & adjust your actual SOC up or down from the actual -Ah’s removed.

By using –Ah’s or consumed energy type screens only, you wind up with a misrepresentation of your actual SOC. Discharging 50% of the assumed capacity from a 200Ah bank, in theory, leaves you with 100Ah’s. This owner only really has a 139 Ah bank, so remove 100Ah’s from that bank, not even accounting for temp, Peukert etc., and we are really taking the bank to approx 28% SOC with each owner assumed dip to 50% SOC. What if he used the  -Ah’s screen to discharge 50% of the assumed 200 Ah capacity and his batteries were just 45F and 139 Ah’s?

These factors affect & adjust your actual SOC in relation to the actual -Ah’s removed. This boat owner was at approximately 28% SOC with each assumed cycle to 50% SOC, if we just assume face value for -Ah’s, as this owner did.

With these images of actual tested Ah capacity it becomes very easy to see how these batteries literally fell off the proverbial cliff in just three years. Was the battery monitor the sole cause of the demise of these batteries? No, absolutely not, but it got to a point where it was hurting more than helping.

Unfortunately, the Ah capacity faded due to abuses, and the owner continued discharging them as if they were new. The battery monitors incorrect programming and misuse began to contribute in a larger way to the demise of this bank and was actually hurting not helping.

If you want any sort of SOC based accuracy from an Ah counter you really should start with your banks actual measured & tested Ah capacity not an assumed capacity based on a sticker.

For a glimpse into how bad the programming situation really is I dug into my shop notes and invoices to show a few examples of ACTUAL vs. PROGRAMMED capacity. Below are a hand full of battery banks I have physically tested from boats with Ah counters installed. I have noted the both the banks actual tested capacity and the programmed capacity. All of these owners thought they knew how to use an Ah counter and many had no idea their batteries were as bad as they were.

Tested Battery Banks: Actual Ah Capacity vs. Programmed Ah Capacity

Deka G31 AGM 105Ah X 3 – #1=68.4Ah, #2=68.7Ah, #3=69.1Ah
ACTUAL = 206.2Ah
PROGRAMMED = 300Ah

Lifeline G27 AGM 100Ah X 4 – #1=71.4Ah, #2=71.0Ah, #3=70.9Ah, #4=71.2Ah
ACTUAL = 284.5Ah
PROGRAMMED = 400Ah

Trojan J185 FDC 205Ah X 4 – #1=154.3Ah, #2=151.2Ah #3=155.1Ah, #4=149.2Ah
ACTUAL = 609.6Ah
PROGRAMMED = 820Ah

Deka 8D GEL 225Ah X 2 – #1=216.1Ah, #2=215.8Ah
ACTUAL = 431.9Ah
PROGRAMMED = 450Ah

Full River G31 AGM 115Ah X 4 – #1=89.3Ah, #2=88.4Ah, #3=89.9Ah, #4=90.1Ah
ACTUAL = 277.7Ah
PROGRAMMED = 440Ah

Deka 4D AGM 198Ah X 3 – #1=63.4Ah, #2=69.6Ah, #3=73.8Ah
ACTUAL = 206.8Ah
PROGRAMMED = 590Ah

Firefly G31 AGM 110Ah X 3 – #1=110.1Ah, #2=109.7Ah, #3=110.4Ah
ACTUAL = 330.2Ah
PROGRAMMED = 330Ah

Odyssey G31 AGM 100Ah X 4 – #1=77.1Ah, #2=78.4Ah, #3=78.9Ah, #4=79.2Ah
ACTUAL = 313.6Ah
PROGRAMMED = 380Ah

*East Penn 6V GC-15 230Ah X 6 – Pair #1=112.3Ah
*ACTUAL = 336.9Ah
PROGRAMMED = 650Ah

**Trojan GC-12 FDC 150Ah X 5 – #1=62.8Ah, #2=66.9Ah, #3=54.6Ah
**ACTUAL = 307.1Ah
PROGRAMMED = 700Ah

*Only tested two of the six as a 12V series pair and data extrapolated for all six based on pair #1.

** Only tested three batteries, no sense going further, data averaged and extrapolated for actual capacity.

The above data makes it easy to see the issues we have with incorrect programming of Ah counters.

6UsingAhsToTtrack

7CoulombieEfficiency

Coulombic Efficiency

This happens to be the set up screen for a Victron BMV-602 for the Charge Efficiency Factor or CEF. Here it is set for 90% which means it will calculate for 110% of the ampere hours that were removed, being returned.

Coulombic efficiency is the charge efficiency of your battery. In a perfect battery we would take 50 amp hours out and put 50 amp hours back in and this would be a Coulombic efficiency of 100%. With lead acid batteries it does not work like this and just like the Ah capacity changes with age, so does charge efficiency. Coulombic efficiency, like Ah capacity, is also a moving target.

Even the most charge efficient lead acid batteries often require 110% of removed capacity to be returned, and some batteries require 130% or more. As batteries age, and sulfate, charge efficiency can get worse. This means that if you use 100Ah’s you need to put back 110Ah’s to 130Ah’s plus in order to reach full charge.

Another issue with charge efficiency is that it’s different at different stages & different points in the SOC curve. Coulombic efficiency is also impacted by battery temperature as well. In bulk charging, when the battery is taking constant-current, the charge efficiency can be pretty close to 98-99% for lead acid batteries yet the last 5% of the SOC curve can see charge efficiencies at less than 50% efficient.

If you discharged to 50% SOC then replaced 20Ah’s, while never attaining a limiting voltage, you could take almost all of that 20Ah’s back out of the battery and wind up at the same exact SOC. BULK charging is a very efficient stage of charging, but absorption is not.

Sadly most Ah counters have no way to discern a difference between bulk and absorption or the gassing stages of charging where Coulombic efficiency is the worst.

Begin Quote:
Charge Efficiency Factor: This is the traditional method used by the battery monitor, and the method used by some other similar monitors. This counts the amp-hours discharged exactly, at 100% rate, but when adding amp hours back (charging) they are counted at a lesser value, for example only 94% of actual charge. This requires that to make the “battery % full” display go back up to 100% charged, slightly more charge (6% more in this case) must be put back compared to what was discharged. This is the effect produced by the “efficiency factor” setting which is set at the factory to a recommended value of 94%, however you may program this to any value you wish from 60 to 100%.
End Quote:

Please let that quote from a battery monitor manual sink in. If you understand anything about charge efficiency you’ll recognize that it’s not the same throughout the SOC curve. By applying a fixed percentage subtracted, as the Ah’s are counted back up results in counting errors if you don’t go all the way back to 100% SOC after each discharge. Simple stuff.

On boats we also use different charge sources, with different charge rates, all of which impact the overall charge efficiency.

  • What if you stop charging in bulk, which is darn near 100% efficient, but the monitor has already counted your SOC back up with a 10% handicap?
  • What if you only discharge to 94% SOC and the Ah counter subtracts 10% on the re-count but the charge efficiency was closer to 50% at high SOC?

Coulombic efficiency is sort of like Peukert, the rate of re-charge current can also cause changes in charge efficiency. A low charge rate of say 4% of battery capacity, 4A for a 100Ah flooded battery, the battery will have a better overall charge efficiency than a charge rate of 25% of Ah capacity or 25A for a 100Ah flooded battery. Charge efficiency also changes with battery chemistry such as GEL, AGM or flooded and also changes as the batteries age.

Unfortunately the typical Ah counter cannot track nor can it calculate for any of these variables in charge efficiencies, it is not designed to do so. To further compound the issue many boats have multiple forms of charging, some with low rates such as solar and some with very high rates such as alternators.

With a Coulomb counter we simply need to set the charge efficiency the best we can. Some Ah counters can set CEF automatically and I strongly recommend using this feature but it relies on you getting back to 100% SOC regularly and can quickly get out of sync during PSOC cycling.

A charge efficiency factor is often set as 75%, 87%, 90% etc., if you choose to do it manually. This means a battery with a factory return ampere hour number of 110% gets set at 90%. Is this perfect? No, but it is the best we can do. All lead acid batteries require more ampere hours to be returned than were taken out.

Unfortunately Ah counters are not programmed to know the difference between BULK/constant-current and ABSORPTION/constant-voltage charging as related to the charge efficiency settings. The higher you go in the SOC range the less efficient the conversion of input energy to stored energy is. Charge efficiency is not simply 110%, 115%, 120% returned, at all stages of charging. The Ah counter only has one number to apply and that is the charge efficiency you set it to apply or that it has chosen to apply. This charge efficiency factor is applied regardless of where you are in the charge state, BULK or ABSORPTION, what the battery temp was, and regardless of rate of re-charge in current. It also ignores where you stopped charging in the SOC curve so PSOC cycling can throw a monkey wrench into the applied calculation.

Unless you do a full 100% recharge cycle, every time you discharge, the Coulombic efficiency setting will lead to counting errors when calculated to reflect SOC. If you partial state of charge cycle (PSOC) in BULK, when off cruising, these errors can add up  quickly.

Testing for charge efficiency is considerably more complicated than Ah capacity so best to simply use the battery manufacturers stated charge efficiency factor or let the Ah counter calculate for you by discharging more than 10% of capacity and then doing a full 100% re-charge. The Xantrex Link monitors, the old Victron BMV-501 and a few others can “auto-calculate” the charge efficiency factor.

Many battery makers don’t publish a charge efficiency number so before buying batteries make sure you can get these numbers. Here’s a tip, don’t buy marine batteries from a company that can’t provide you a Peukert’s Constant, a general charge efficiency factor or the 20 hour Ah capacity figure.

Here’s an example of why a single number charge efficiency setting will lead to counting errors or drift in an Ah counter..

Begin Quote:
Lifeline Battery – “The amount of energy necessary for a complete recharge depends on the depth of discharge, rate of recharge, and temperature. Typically, between 102% and 110% of the discharged ampere-hours must be returned for full recharge.
End Quote:

A single number for charge efficiency, such as 85% or 90%, is just not realistic in terms of overall accuracy on a vessel that PSOC cycles. However, that is what the battery monitor is set up for, and what we have to work with, so do your best to get it as close to accurate as you can. Finding this number may involve a call to your battery manufacturer or some deep internet searching. The Charge efficiency setting will cause out of sync events with an aging battery, & PSOC use, there’s just no way around this. Do the best you can to ascertain the best charge efficiency suggestion for your batteries. Again, if your Ah counter offers an automatic charge efficiency calculation, I suggest using it.

CAUTION: Not all battery monitors allow you to program for charge efficiency and they may try to internally apply a preset efficiency to all batteries. Be careful with monitors that leave this important programming option out or ones that do not offer an automatic CEF calculation.

I will leave charge efficiency with this quote from a US Government study of flooded lead acid batteries. In this test it was a Trojan G-31 flooded battery. Think about how an Ah counter would be calculating for CEF if you cycled your battery in the top 30% of the batteries capacity meaning 100% SOC to 70% SOC or say 60% to 90% SOC.

Begin Quote:
Preliminary results agree well with established general understanding that the charge efficiency of flooded lead-antimony batteries declines with increasing state-of-charge, and that charge efficiency is a non-linear function of battery state-of-charge. These tests indicate that from zero SOC to 84% SOC the average overall battery charging efficiency is 91%, and that the incremental battery charging efficiency from 79% to 84% is only 55%.
End Quote:

Think about that statement and how a single number charge efficiency could impact your bank if you shallow cycled it in the top 30% of the SOC range or routinely cycled in the most efficient range from 50% to 80%SOC. The charge efficiency algorithm in many Ah counters was designed with a 100% re-charge in mind not PSOC cycling as we do on boats.

Do the best you can with this one..

Peukert Compensation

This PC screen represents the Peukert’s Compensation for the Victron BMV-602. Here it’s set for 1.12 or the proper factory suggested setting for a Lifeline AGM battery.

I touched on the Peukert effect above, but there is more to it.

Most cruising boaters, with properly sized house banks,  never draw their house banks in excess of the 20 hour rate, as an average load. Take for example a boat owner with a 450Ah battery bank. The 20 hour rate on this bank would be a load of 22.5A. So, at 75F – 80F with a 22.5A load this bank should deliver 450Ah’s, once broken in. Most boat owners with a 450Ah bank are drawing it down at well under 10A, on average. If you do not have an accurate Peukert’s constant programmed in you will be seeing an inaccurate SOC reading because it will not correctly calculate for Peukert.

WARNING: Most Ah counters only correct for Peukert when discharge loads exceed the 20 hour rate (high discharge corrections) and fail to calculate for discharge rates below the 20 hour rate (Low discharge corrections).

The sad reality is that most boats with Ah counters I set foot on have never had the Peukert setting on the Ah counter adjusted. The fault of the owner? No, not really because many Ah counter manuals suggest that leaving it at the factory setting should be okay

IMPORTANT: Peukert computations are not a be-all-end all and tracking the Peukert Effect is very tough. For instance I have run tests on slightly used batteries where I will take a 100Ah battery testing at 97% of new and apply a 40A load for 1 hour (-40Ah). I then switch to the actual 20 hour rate of 5A and continue discharging down to 10.5V. I have yet to see a single battery I have tested match its factory predicted Peukert’s constant. Some on the net suggest that all the energy is still stored in the battery so a high load for a short duration won’t impact overall Ah capacity but it definitely does.  Having an accurate Peuekrt’s Constant can help but it is not the panacea one might think it is.

Lead acid batteries used on boats range from a Peukert of about 1.11 to a high of 1.60. These are large variances in how your bank will discharge and how many ampere hours you can remove at XX rate of discharge can have a wide impact on battery SOC.

If a battery monitor does not have a way to program for the Peukert’s constant, and many don’t, the manufacturer should provide a good explanation as for how they compensate SOC for rate of discharge, either low side or high side, as related to the Peukert Effect. If the unit has no Peukert correction then the manufacturer should be able to explain how they compensate for varying discharge rates. I know Blue Sea is using some cool algorithms and it seems to work quite well. If an Ah counter manufacturer can’t explain this, walk away. Choose your battery monitor wisely.

Batteries, even when new, have widely varying Peukert’s constants and these too change with age. Having the correct factory Peukert’s constant programmed in can be important aspect in how these devices report & calculate for SOC as accurately as they can. Even if you do program it correctly, in regards to the Peukert’s constant, this too changes with age.

In the beginning, with new batteries, you might even see it lower than what the manufacturer says it is, but as the battery ages, it usually increases. A Peukert’s test can always be done but is often beyond the scope of most boat owners. A Peukert test involves two discharge tests, at varying discharge rates, and then a calculation to figure it out based on the differences. If you are willing to go to this length, Victron has a good Peukert Calculator on their web site.

In short, if your Peukert’s constant is not set correctly, as well as Ah capacity, and Coulombic efficiency you’ll really stand little chance at getting the accuracy you may desire from your Ah counter.

8PeukertCompensation

9PeukertEffectOnCapacityVaryingLoads

Peukert Effect on Capacity At Varying Loads

There is no better way to explain this than to show you an actual hourly capacity chart from a battery maker who publishes good reliable data. Don’t expect good data like this from Wal*Mart / Johnson Controls products or no-name batteries, it usually does not exist. This battery happens to be a very heavy duty L-16 deep cycle battery with a Peukert of 1.50.

So what can we glean from this chart?

100 Hour Discharge Rate – If we go all the way to the top we can see that if we apply a small load of 4.86A to this 375Ah battery it will run for 100 hours before hitting 10.5V and deliver 486 ampere hours of usable capacity! Yes 486Ah’s from a 375Ah battery when drawn at a low rate. This is the net positive side of the Peukert effect. By drawing this battery at 4.86A vs. 18.75A we’ve netted a usable capacity gain of almost 30%. If your battery monitor is not programmed to calculate for this, how accurate do you think your SOC will be….?

WARNING: Most Ah counters only compensate Peukert for HIGH DISCHARGE RATES. They completely leave out the low discharge side of the Peukert effect which can  increase the banks usable capacity at a LOW DISCHARGE RATE. Most all Ah counters have no way to compensate for a 30, 40, 50 or 100 hour discharge rate.

Now look at the rate of discharge compared to our typical house-bank discharge rates on cruising boats. A good many cruising boaters discharge their bank at about 25-30% of the 20 hour rate? Well 4.86A is 26% of the 20 hour rate for this particular battery.

20 Hour Discharge Rate – This is a 375Ah rated battery and at an 18.75A  load it will run for 20 hours and deliver its rated capacity. 375Ah ÷ 20 hours = 18.75A discharge rate. This is Peukert net neutral.

1 Hour Discharge Rate – Conversely if we apply a 135A load to this battery we can only get 1 hour of run time from it before it hits 10.5V. This is the net negative side of Peukert.

As can be seen from this battery manufacturers hourly discharge rate chart the Peukert effect is a setting that simply should not be ignored. Even if it only compensates one sided it still pays to program it as best you can. You really need to program your battery monitor for the correct Peukert in order to get the best information from it.

Let’s contrast that 1.50 Peukert L-16 flooded battery to a Lifeline AGM battery, which has a Peukert of 1.12. Using a 120 hour discharge rate, on the Lifeline AGM battery, will yield nearly 114% of its 20 hour rating (Lifeline does not publish a 100 hour rate). This is a large difference in the actual SOC of these two batteries especially if you can’t physically properly program the Peukert in your Ah counter for low discharge rates..

Peukert Effect Means:

-Loads above the 20 hour discharge rate = Less usable Ah capacity

-Loads at the 20 hour discharge rate = Rated battery Ah capacity

-*Loads below the 20 hour discharge rate = More usable Ah capacity

*Most Ah counting battery monitors do not account or correct for loads below the 20 hour discharge rate.

Battery Temperature

This is another often overlooked, yet important, aspect of programming a battery monitor, if it even has this capability. This is one which both DIY’s and pro’s ignore with regularity, and neither installer really should unless the battery monitor does not allow for it and far too many don’t.

A 100Ah battery rated at 77F will not deliver 100Ah’s at 45F…..

“What? Huh? But it’s a 100Ah battery?”

Yes it is a 100Ah “rated” battery but only at 77F and when discharged at the 20 hour rate of 5A. At any other temperature or rate of discharge your usable capacity varies and this is what the Ah counter is trying to calculate for with the SOC screen. Here in Maine it’s not unusual for me to measure batteries in the early spring at 40-45F as the water temps are keeping the hull & battery compartment at close that temp. I then go into the owners battery monitor, such as a Xantrex Link-Pro, and see it programmed for a fixed temp range of 80F or 75F etc..

What do you suppose this does to the calculations & compensations the battery monitor is trying to apply in order to achieve the correct SOC for the battery? Do you think the Ah counter can be accurate with a 40F +/- difference between programmed temp and actual battery temp? The answer is no it can’t and this error is simply stacked on top of all the other programming steps that can all lead to counting errors. Frustrating and obvious as it may seem many Ah counter makers miss the mark entirely on battery temp and fail to give you an option to program for battery temperature nor do they offer an external temp sensor.

Ideally the best Ah counting battery monitor will be “full featured”and one that offers an on-battery temp sensor so these calculations can be done in real-time. The Xantrex Link-Pro & the Victron BMV-702 both offer this option as do Philippi Battery Monitors. Others may offer a programmable temp setting. If a monitor offers a programmed temp setting, (better than nothing) as opposed to an on-battery temp sensor, (ideal) the temp setting should realistically get periodically reprogrammed as water & battery temperatures change from season to season.

Different brands and chemistries of lead acid batteries will also perform differently under varying temperatures, but most battery monitors do not allow you to adjust the slope for temp corrections to SOC. The Victron BMV-702, with optional temp sensor, is the only one I know of that allows slope corrections for temp.

“Why would a temp slope option be important?”

Simply put a TPPL AGM (thin-plate pure-lead) will not be affected by temp changes exactly the same way as a deep cycle L-16 Rolls battery would. Bottom line, if your battery monitor offers a temp sensor, use it. If it offers temp slope corrections try to get this data from the battery manufacturer and use it.

Self Discharge:

While we are on the subject of the effects of temperature now is a good opportunity to discuss self discharge. As most boat owners well know, a lead acid battery will lose capacity just sitting there. While some Ah counters ask you for a % each month during set up, this self discharge, like everything else, varies with temperature. Suffice it to say that an Ah counter can’t really track self discharge very accurately. If your boat sits there for a week or two or three none of the self discharge will be accurately counted using a fixed percentage calculation. At 100F the battery could easily exceed the fixed % self discharge per month calculation and if at 40F the battery will come nowhere near the fixed % self discharge per month. Not a single battery monitor manufacturer has been able to confirm for me that self-discharge settings work with programmed or actual battery temp in the programming code.

10BatteryTemperature

11SmarterUseOfBatteryMonitor

Smarter Use of Your Battery Monitor

“But RC I have heard you say many times battery monitors generally lead folks to longer battery life, how can that be?”

That is correct and I still actually stand by that statement despite a lack of accurate programming. Let me share some reasons why I can say this…

Reason #1

Prior to having battery monitors many of my customers had simple analog volt meters. Most of these analog volt meters were quite inaccurate and many owners often discharged to well below 12.0V before recharging. They were in essence taking their battery to 70-80% DOD with each cycle.. Battery life for many was the typical 2-3 years we see with abused batteries.

Along comes the Ah counting battery monitor and all of a sudden the owner has a screen to watch, buttons to press and has some insight into the battery that never before existed. A good portion of these customers now started to be really careful about battery depth of discharge (DOD). The 50% DOD they assumed previously, which was really closer to 70 or 80% DOD, now became “Wow I am at 65% SOC I think I will recharge.” Human attention was brought to batteries that never had such a fan base.

Reason #2

Previous to the Ah counting battery monitor most owners had not a clue as to what their alternator or charging systems were doing. They watched voltage and when it got to 14.4V or so they stopped charging. With the battery monitor they could at least hold off until a good portion of the -Ah’s had been returned. Is this accurate? No, not at all, but it resulted in batteries getting to a higher SOC than the owners previously & regularly attained thus leading to overall healthier batteries.

Reason #3

Peukert rears his head once again. Remember when we talked about drawing the batteries at a slower rate of discharge and getting slightly more usable capacity from the bank due to the Peukert Effect? Keep in mind that many boat owners are discharging their banks at approximately 20-30% of the 20 hour discharge rate. A bank of 450 Ah’s can support a 22.5A load for 20 hours at 77F. If we draw that bank at 6A at 82F it will run longer than 20 hours at that load. This can make a typical deep cycle battery bank, as installed on cruising boats, appear slightly larger based on the low rate discharge. Many owners look only at the –Ah’s screen and then unknowingly mentally assume a Peukert of 1.00, which does not exist, even in LiFePO4 batteries. With this type of low current discharge use, the actual DOD before recharge was slightly higher than was assumed by looking only at the -Ah’s screen & thus a shallower DOD before recharge and a higher SOC after recharge.

With those three points it is easy to see how we take an average battery life of 2-3 years and extend it to 4-5 or more, even with a poorly programmed monitor. There of course does eventually come a point where the battery monitor is actually harming the batteries when actual capacity fade has not been accounted for and these batteries tend to litreally fall off the proverbial cliff, when this occurs.

We can do better, if we program more accurately.

“ RC I want to  keep my Ah counter more accurate, keep it on its toes so to speak, but I am just not inclined to do an actual 20 hour capacity test? What else can I do?”

The *Old School SOC Test:

  • Check the SOC screen and write it down
  • Check the –Ah’s screen and write it down (Hint: -Ah’s and SOC should almost never agree)
  • On a day when the batteries are between 75 & 80F disconnect them
  • Allow them to sit for at least 24 hours (AGM & GEL may take longer)
  • Test the specific gravity (SG) or the open circuit voltage (OCV) at the battery terminals
  • Compare this voltage or SG reading to your manufacturers;  SG to SOC or OCV to SOC scales. (Avoid batteries that don’t have this data)
  • How does this compare to your Ah counter?

*A marginal method for checking for the level of honesty in your battery monitor at tracking SOC

It’s important to understand that every 10% of battery capacity is represented by an approx 0.1V change in the rested open circuit voltage (OCV) reading. A short rest or an incorrect OCV reading is no better than an improperly calibrated battery monitor at finding your approximate SOC.

Different batteries from different manufacturers will have a slightly different rested OCV or SG for determining the approximate SOC. Generic scales for this, often found on the internet, may not apply well to your particular batteries. Always get your OCV to SOC or SG to SOC charts directly from the manufacturer of your batteries.

Please also understand also that the test above only tells you how the monitor is tracking against SOC, not what your current Ah capacity is. Specific gravity (SG) or OCV readings tell you nothing about the actual Ah capacity your battery can deliver. For determining Ah capacity the only thing you can do is run a physical 20 hour Ah capacity test.

The battery bank represented by the meter reading, shown at 12.76V, had rested for approx 3.5 hours completely disconnected, at 80F. After 24 hours it was giving an OCV reading of 12.54V, or approx 84% SOC for this battery bank. The Ah counter said the battery was 100% full, a 16% difference in the relative SOC readings. If we had accepted the 3.5 hour OCV reading we would have incorrectly assumed the Ah counter was accurate when it was really 16% off.

“But RC 16% is not that much is it?”

This was a 450Ah rated bank so a 16% counting error = a 72 Ah variance. A 72Ah mistake is an entire day’s energy use for this particular boat. To compound on that counting error, when these batteries were tested they were really only 383Ah’s…. This is how the snowball rolls…

Avoid Using Auto-Sync or Auto-Reset

Most all Ah counters attempt to re-set to 100% at the same point in time your batteries reach full. In theory this sounds great. In practice, in the real world, this is very often an utter failure. In regards to auto-sync most Ah counter owners will be far better served to simply program this out or turn this off if it allows. The problems surrounding Ah counters and auto-sync are so problematic the issue has even earned itself a nickname, “The Gotcha“…..

To program auto-sync out/off simply plug in parameters that are not possible for the charging system to meet. In this image I have programmed the Vc or “Voltage Charged” to 14.6V. Considering this is for a GEL battery, which never ever charges above 14.1V, the battery monitor can not “auto-sync” at the wrong time because Charged Voltage will never get to 14.6V. Simple stuff…

Unless you have one single charge source, and you tie to a dock after every use of your boat, or even RV, and leave it there charging for more than 24 hours, you would be wise to not use auto-sync. For boats with multiple charge sources, especially solar & wind, you can spend lots and lots of time trying to get this programming right and still fail to do so.

“RC, Isn’t my battery full when the ampere hours on the screen are returned to zero?”

Contrary to popular misconception Ah counting battery monitors do not always reset based on Ah’s returned to the battery. Instead they use a number of factors such as; voltage, time, current and time at both current and voltage to try and determine when the battery is actually full. Unfortunately, with multiple charge sources, and house loads, they can get confused and tricked into prematurely re-setting to 100% SOC..

These are the parameters the most widely used Ah counters use to determine “full”.

Charged Voltage – This is the voltage the battery monitor looks for in order to qualify for a “full charge” reset. Voltage above XX.XX volts = CHECK

Tail Current – Tail Current is the amount of charge current the charge source needs to be below in order to qualify for a “full charge” auto-sync reset. Current below X.XX amps = CHECK

Charged Detection Time – The monitor looks at Charged Voltage and Tail Current and applies a min Time Factor at those levels. If the time for voltage and amperage meet the minimum time applied factor this = Auto-Sync Reset to 100% SOC

Minimum Discharge % Threshold – Some Ah counters need to see a 10% discharge, from full, before allowing an auto-sync based on the above factors. This means that you’d need to dip to 89% SOC for an auto-sync could occur.

The “Gotcha” Conundrum:

Now let’s look at this in a real world scenario. Your boat has a solar array and it’s early to mid morning. The batteries are still in bulk charge mode, and the solar system is just barely able to get them to your Charged Voltage setting of 13.2V.

Because of the low current supplied by the solar array, due to it being early in the day, all the PV system can muster is 13.2V, and at a current below your Tail Current. If you’ve dipped below 90% SOC over night & the system proceeds like this for longer than the Charged Detection Time, regardless of where you are in the SOC range, the monitor can actually reset itself to 100% SOC.

I have been sitting next to batteries 30-40Ah’s known discharged when a battery monitor has reset to 100% SOC. I glance over one minute and it is at 85% SOC and the next it has reset to 100% SOC. This is simply poor programming and leads to vicious counting errors.

System loads on your boat, such as water makers, refrigeration etc. can also pull charging voltage and net charge current below the charged detection parameters, if your charge source is not able to muster it all. These house loads can also indirectly cause the monitor to reset on voltage, tail current and charged detection time.

There are many scenarios we can paint that can cause some of these monitors to reset falsely & prematurely thus creating more counting errors.

For the average boater, simply turn off or program out auto-sync…

For the die hard electrically minded individuals out there it is possible to program auto-sync to still work, but this is a recipe you’ll need to figure out for your own system and your system only. There are far too many variables to give a cookie-cutter recipe for auto-sync especially when we start mixing in solar or wind etc..

I set foot on far too many boats with battery monitors reading 100% SOC where I fire up the motor and the alternator is pumping 20-40A plus into the batteries. These are not 100% SOC batteries… A full & healthy battery will accept less than 1% of its Ah rating at absorption voltage. A Manual Sync current of 1.5% – 2%, of Ah capacity, is a safe number for a cruising reset target.

Disable the “auto-sync” feature and use manual “known-full” re-sets.

“Come on RC, what the heck is a known-full reset?”

The Known Full Reset:

#1 Turn all DC loads OFF

#2 Fire up battery charger or engine & allow to run 4-5 minutes

#3 Voltage should be at ABSORPTION level or 14.4V+ (GEL 14.1V)

#4 Net accepted charge current should be less than 1.5% -2% of Ah capacity

#5 Okay to MANUALLY reset to 100% SOC

IMPORTANT: Battery voltage should be at absorption voltage not float voltage, unless it has been floating in excess of 24 hours.

A known-full reset takes but a few seconds once the charge source has run for a few minutes. Easy and known accurate.

You can use 2% as your known-full current threshold but 1% or 1.5% is a fuller and healthier battery. For example most AGM batteries are not even considered full until they hit 0.5% of their capacity in net charge current at absorption voltage.

For a 1% reset with non-GEL lead acid batteries:

100Ah Battery – Voltage 14.4V and Charge Current 1.0A

200Ah Battery – Voltage  14.4V and Charge Current 2.0A

300Ah Battery – Voltage  14.4V and Charge Current 3.0A

400Ah Battery – Voltage 14.4V and Charge Current 4.0A

500Ah Battery – Voltage 14.4V and Charge Current 5.0A

Etc. etc.

By using a known-full manual re-set you are not guessing when your battery is full, you know when they are full. Resetting your Ah counter to known-full regularly, especially after a few PSOC cycles, helps keep it in better synchronization with your bank for SOC predictions.

12StopUsingReset

13MyFrealingHeadIsSpinning

How Did I Arrive At All This?

I know it is a lot to absorb and to comprehend. Much of it I know will go directly against what you thought you knew about Ah counters, and I’ apologize for that.

How did I arrive at all this? It’s what I do and part of my job to understand this stuff. I actually test an awful lot of batteries for 20 hour capacity. All my tested batteries are run through the paces in a controlled temp “water bath” set for 77F (unless testing certain GEL batteries) and tested with laboratory grade calibrated test equipment. The battery being tested in this image is at the very tail end of a 20 hour capacity test. It is a Lifeline GPL-31T rated at 105Ah’s. As can easily be seen it delivered slightly over 105Ah’s and the 5.25A load is just about to cut off at 10.499V..

With this information an Ah counter can be more accurately programmed. Without accurate programming you can use your Ah counter but just don’t expect more than a general ball-park accuracy. Is this bad? Heck no, but I think you’ll agree we can always do better.

Don’t fret it though, there are many ways to look at this:

#1 You now have a better understanding of Ah counters and will be more careful trusting yours empirically, as you may have in the past.

#2 You are perfectly happy with your banks performance already so if you can tweak it just a bit, and get better life, you’ll be in 7th heaven.

#3 You’re a a geek at heart and you want this damn thing to be as accurate as you paid for…. Good luck.. (wink)

#4 There must be an easier way?

There is now an easier product for monitoring SOC, it is called the Smartgauge.

The Smart Gauge gives you less information but a far more accurate representation of SOC. In the whole realm of battery health, and your system running efficiently, SOC is the only parameter that really matters. You can add a Smartgauge and use it side by side with any Ah counter but if you do that I would suggest that you ignore the Ah counter for anything more than amps, -Ah’s and volts, unless you want to go all tech geek and actually program it accurately….

This article does not change anything about Ah counters, they have been like this since they were invented. I am hopeful it did give you a better understanding of how they actually work and how and why they drift or develop counting errors over time. It is my hope that you can use this information to make your Ah counter more accurate for your battery bank.

Good luck!

Let’s Keep This Site Running!

Like what you saw or read? Would you like to see more articles like this? Is so feel free to donate, support the site and keep it growing. I am trying my hardest to keep this information FREE. If you liked it, learned from it or I saved you some money feel free to make a small donation, that’s all I ask.

Click the DONATE button below if you would like to make a donation.

Donate To Marine How To!

The post Making Your Battery Monitor More Accurate appeared first on Marine How To.

]]>